CoFilter_2D

scalation.modeling.neuralnet.CoFilter_2D
See theCoFilter_2D companion class
object CoFilter_2D

The CoFilter_2D object provides the convolution and pooling operators.

Attributes

See also

mathstat.MatrixD for infix implementations of conv (+) -- valid convolution, no reversal (conv_ for reversal) convs (~+) -- same convolution, with reversal convf (*++) -- full convolution, with reversal

Companion
class
Graph
Supertypes
class Object
trait Matchable
class Any
Self type

Members list

Value members

Concrete methods

def conv(c: MatrixD, x: MatrixD): MatrixD

Return the 'valid' (no padding) convolution of cofilter matrix c and input matrix x. Caveat: does not include reversal.

Return the 'valid' (no padding) convolution of cofilter matrix c and input matrix x. Caveat: does not include reversal.

Value parameters

c

the cofilter matrix of coefficients

x

the input/data matrix

Attributes

def conv(c: MatrixD, x: TensorD): TensorD

Return the 'valid' (no padding) convolution of cofilter matrix c and input tensor x. Caveat: does not include reversal.

Return the 'valid' (no padding) convolution of cofilter matrix c and input tensor x. Caveat: does not include reversal.

Value parameters

c

the cofilter matrix of coefficients

x

the input/data tensor

Attributes

def convf(c: MatrixD, x: MatrixD): MatrixD

Return the 'full' convolution of cofilter matrix c and input matrix x.

Return the 'full' convolution of cofilter matrix c and input matrix x.

Value parameters

c

the cofilter matrix of coefficients

x

the input/data matrix

Attributes

def convf(c: MatrixD, x: TensorD): TensorD

Return the 'full' convolution of cofilter c matrix and input tensor x.

Return the 'full' convolution of cofilter c matrix and input tensor x.

Value parameters

c

the cofilter matrix of coefficients

x

the input/data tensor

Attributes

def convs(c: MatrixD, x: MatrixD): MatrixD

Return the 'same' (with padding) convolution of cofilter matrx c and input matrix x. Same means that the size of the result is the same as the input (via padding).

Return the 'same' (with padding) convolution of cofilter matrx c and input matrix x. Same means that the size of the result is the same as the input (via padding).

Value parameters

c

the cofilter matrix of coefficients

x

the input/data matrix

Attributes

def convs(c: MatrixD, x: TensorD): TensorD

Return the 'same' (with padding) convolution of cofilter matrix c and input tensor x. Same means that the size of the result is the same as the input (via padding).

Return the 'same' (with padding) convolution of cofilter matrix c and input tensor x. Same means that the size of the result is the same as the input (via padding).

Value parameters

c

the cofilter matrix of coefficients

x

the input/data tensor

Attributes

def pool(x: MatrixD, s: Int): MatrixD

Return the max-pooling results over all pooling windows.

Return the max-pooling results over all pooling windows.

Value parameters

s

the size (s x s) of the pooling window

x

the input/data matrix

Attributes

def pool(x: TensorD, s: Int): TensorD

Return the max-pooling results over all data instances (tensor level).

Return the max-pooling results over all data instances (tensor level).

Value parameters

s

the the size of the pooling window

x

the input/data tensor

Attributes

def pool_a(x: MatrixD, s: Int): MatrixD

Return the avg-pooling results over all pooling windows.

Return the avg-pooling results over all pooling windows.

Value parameters

s

the size (s x s) of the pooling window

x

the input/data matrix

Attributes

def pool_a(x: TensorD, s: Int): TensorD

Return the avg-pooling results over all data instances (tensor level).

Return the avg-pooling results over all data instances (tensor level).

Value parameters

s

the the size of the pooling window

x

the input/data tensor

Attributes