scalation.modeling.forecasting
Members list
Packages
Type members
Classlikes
The AR class provides basic time series analysis capabilities for Auto-Regressive (AR) models. AR models are often used for forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
The AR class provides basic time series analysis capabilities for Auto-Regressive (AR) models. AR models are often used for forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
y_t = b dot [1, y_t-1, ..., y_t-p) + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- adjusted
-
whether in
Correlogramwhen calculating auto-covarainces/auto-correlations to adjust to account for the number of elements in the sum Σ (or use dim-1) - bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to AR.hp)
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- See also
-
VectorD.acov - Companion
- object
- Supertypes
-
trait Correlogramclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
- Known subtypes
The ARIMA class provides basic time series analysis capabilities for Auto- Regressive 'AR' Integrated 'I' Moving-Average 'MA' models. In an ARIMA(p, d, q) model, p and q refer to the order of the Auto-Regressive and Moving-Average components of the model; d refers to the order of differencing. Given time series data stored in vector y, its next value y_t = y(t) may be predicted based on prior values of y and its noise:
The ARIMA class provides basic time series analysis capabilities for Auto- Regressive 'AR' Integrated 'I' Moving-Average 'MA' models. In an ARIMA(p, d, q) model, p and q refer to the order of the Auto-Regressive and Moving-Average components of the model; d refers to the order of differencing. Given time series data stored in vector y, its next value y_t = y(t) may be predicted based on prior values of y and its noise:
y_t = δ + Σ(φ_i y_t-i) + Σ(θ_i e_t-i) + e_t
where δ is a constant, φ is the auto-regressive coefficient vector, θ is the moving-average coefficient vector, and e is the noise vector.
If d > 0, then the time series must be differenced first before applying the above model.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to AR.hp)
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Supertypes
-
class ARMAclass ARtrait Correlogramclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The ARIMA_diff object provides methods for taking first and second order differences, as well as transforming back to the original scale.
The ARIMA_diff object provides methods for taking first and second order differences, as well as transforming back to the original scale.
diff: position y --> velocity v --> acceleration a (actual) | | | backform, undiff: position yp <-- velocity vp <-- acceleration ap (predicted)
Attributes
- See also
-
stats.stackexchange.com/questions/32634/difference-time-series-before-arima-or-within-arima
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
ARIMA_diff.type
The ARMA class provides basic time series analysis capabilities for Auto-Regressive, Moving Average (ARMA) models. ARMA models are often used for forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values and q shocks.
The ARMA class provides basic time series analysis capabilities for Auto-Regressive, Moving Average (ARMA) models. ARMA models are often used for forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values and q shocks.
y_t = δ + Σ[φ_j y_t-j] + Σ[θ_j e_t-j] + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to AR.hp)
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class ARtrait Correlogramclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
- Known subtypes
-
class ARIMA
The ARX class provides basic time series analysis capabilities for ARX models. ARX models build on ARY by including one or more exogenous (xe) variables. Given time series data stored in vector y, its next value y_t = combination of last p values of y and the last q values of each exogenous variable xe_j.
The ARX class provides basic time series analysis capabilities for ARX models. ARX models build on ARY by including one or more exogenous (xe) variables. Given time series data stored in vector y, its next value y_t = combination of last p values of y and the last q values of each exogenous variable xe_j.
y_t = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - n_exo
-
the number of exogenous variables
- tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y and xe) @see
ARX.apply - y
-
the response/output vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecaster_Regtrait FeatureSelectionclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
- Known subtypes
The ARX companion object provides factory methods for the ARX class.
The ARX companion object provides factory methods for the ARX class.
Attributes
The ARX_D class provides basic time series analysis capabilities for ARX_D models. ARX_D models are often used for forecasting. ARX_D uses DIRECT (as opposed to RECURSIVE) multi-horizon forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
The ARX_D class provides basic time series analysis capabilities for ARX_D models. ARX_D models are often used for forecasting. ARX_D uses DIRECT (as opposed to RECURSIVE) multi-horizon forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
y_t = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - n_exo
-
the number of exogenous variables
- tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y) @see
ARX_D.apply - y
-
the response/output matrix (column per horizon) (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecaster_Dclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
- Known subtypes
-
class ARX_Quad_Dclass ARX_Symb_D
The ARX_D companion object provides factory methods for the ARX_D class.
The ARX_D companion object provides factory methods for the ARX_D class.
Attributes
The ARX_Quad class provides basic time series analysis capabilities for ARX quadratic models. ARX quadratic models utilize quadratic multiple linear regression based on lagged values of y. ARX models build on ARY by including one or more exogenous (xe) variables. Given time series data stored in vector y, its next value y_t = combination of last p values of y, y^2 and the last q values of each exogenous variable xe_j.
The ARX_Quad class provides basic time series analysis capabilities for ARX quadratic models. ARX quadratic models utilize quadratic multiple linear regression based on lagged values of y. ARX models build on ARY by including one or more exogenous (xe) variables. Given time series data stored in vector y, its next value y_t = combination of last p values of y, y^2 and the last q values of each exogenous variable xe_j.
y_t = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - n_exo
-
the number of exogenous variables
- tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y, y^2 and xe) @see
ARX_Quad.apply - y
-
the response/output vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class ARXclass Forecaster_Regtrait FeatureSelectionclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The ARX_Quad companion object provides factory methods for the ARX_Quad class.
The ARX_Quad companion object provides factory methods for the ARX_Quad class.
Attributes
The ARX_Quad_D class provides basic time series analysis capabilities for ARX_Quad_D models. ARX_Quad_D models are often used for forecasting. ARX_Quad_D uses DIRECT (as opposed to RECURSIVE) multi-horizon forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
The ARX_Quad_D class provides basic time series analysis capabilities for ARX_Quad_D models. ARX_Quad_D models are often used for forecasting. ARX_Quad_D uses DIRECT (as opposed to RECURSIVE) multi-horizon forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
y_t = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - n_exo
-
the number of exogenous variables
- tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y) @see
ARX_Quad_D.apply - y
-
the response/output matrix (column per horizon) (time series data)
Attributes
- Companion
- object
- Supertypes
-
class ARX_Dclass Forecaster_Dclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The ARX_Quad_D companion object provides factory methods for the ARX_Quad_D class.
The ARX_Quad_D companion object provides factory methods for the ARX_Quad_D class.
Attributes
- Companion
- class
- Supertypes
- Self type
-
ARX_Quad_D.type
The ARX_Symb class provides time series analysis capabilities for ARX Symbolic Regression (SR) models. These models include trend, linear, power, root, and cross terms for the single endogenous (y) variable and zero or more exogenous (xe) variables. Given time series data stored in vector y and matrix xe, its next value y_t = combination of last p values of y, y^p, y^r and the last q values of each exogenous variable xe_j, again in linear, power and root forms (as well as ENDO-EXO cross terms).
The ARX_Symb class provides time series analysis capabilities for ARX Symbolic Regression (SR) models. These models include trend, linear, power, root, and cross terms for the single endogenous (y) variable and zero or more exogenous (xe) variables. Given time series data stored in vector y and matrix xe, its next value y_t = combination of last p values of y, y^p, y^r and the last q values of each exogenous variable xe_j, again in linear, power and root forms (as well as ENDO-EXO cross terms).
y_t = b dot x_t + e_t
where y_t is the value of y at time t, x_t is a vector of inputs, and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - n_exo
-
the number of exogenous variables
- tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y and xe) @see
ARX_Symb.apply - y
-
the response/output vector (main time series data)
Attributes
- See also
-
MakeMatrix4TSfor hyper-parameter specifications. - Companion
- object
- Supertypes
-
class ARXclass Forecaster_Regtrait FeatureSelectionclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The ARX_Symb companion object provides factory methods for the ARX_Symb class.
The ARX_Symb companion object provides factory methods for the ARX_Symb class.
Attributes
The ARX_Symb_D class provides time series analysis capabilities for ARX_D Symbolic Regression (SR) models. These models include trend, linear, power, root, and cross terms for the single endogenous (y) variable and zero or more exogenous (xe) variables. Given time series data stored in vector y and matrix xe, its next value y_t = combination of last p values of y, y^p, y^r and the last q values of each exogenous variable xe_j, again in linear, power and root forms (as well as ENDO-EXO cross terms).
The ARX_Symb_D class provides time series analysis capabilities for ARX_D Symbolic Regression (SR) models. These models include trend, linear, power, root, and cross terms for the single endogenous (y) variable and zero or more exogenous (xe) variables. Given time series data stored in vector y and matrix xe, its next value y_t = combination of last p values of y, y^p, y^r and the last q values of each exogenous variable xe_j, again in linear, power and root forms (as well as ENDO-EXO cross terms).
y_t = b dot x_t + e_t
where y_t is the value of y at time t, x_t is a vector of inputs, and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - n_exo
-
the number of exogenous variables
- tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y and xe) @see
ARX_Symb_D.apply - y
-
the response/output vector (main time series data)
Attributes
- See also
-
MakeMatrix4TSfor hyper-parameter specifications. - Companion
- object
- Supertypes
-
class ARX_Dclass Forecaster_Dclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The ARX_Symb_D companion object provides factory methods for the ARX_Symb_D class.
The ARX_Symb_D companion object provides factory methods for the ARX_Symb_D class.
Attributes
- Companion
- class
- Supertypes
- Self type
-
ARX_Symb_D.type
The ARY class provides basic time series analysis capabilities for ARY models. ARY models utilize multiple linear regression based on lagged values of y. Given time series data stored in vector y, its next value y_t = combination of last p values of y.
The ARY class provides basic time series analysis capabilities for ARY models. ARY models utilize multiple linear regression based on lagged values of y. Given time series data stored in vector y, its next value y_t = combination of last p values of y.
y_t = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y) @see
ARY.apply - y
-
the response/output vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecaster_Regtrait FeatureSelectionclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
- Known subtypes
The ARY companion object provides factory methods for the ARY class.
The ARY companion object provides factory methods for the ARY class.
Attributes
The ARY_D class provides basic time series analysis capabilities for ARY_D models. ARY_D models are often used for forecasting. ARY_D uses DIRECT (as opposed to RECURSIVE) multi-horizon forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
The ARY_D class provides basic time series analysis capabilities for ARY_D models. ARY_D models are often used for forecasting. ARY_D uses DIRECT (as opposed to RECURSIVE) multi-horizon forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
y_t = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y) @see
ARY_D.apply - y
-
the response/output matrix (column per horizon) (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecaster_Dclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The ARY_D companion object provides factory methods for the ARY_D class.
The ARY_D companion object provides factory methods for the ARY_D class.
Attributes
The ARY_Quad class provides basic time series analysis capabilities for ARY quadratic models. ARY quadratic models utilize quadratic multiple linear regression based on lagged values of y. Given time series data stored in vector y, its next value y_t = combination of last p values of y and y^2.
The ARY_Quad class provides basic time series analysis capabilities for ARY quadratic models. ARY quadratic models utilize quadratic multiple linear regression based on lagged values of y. Given time series data stored in vector y, its next value y_t = combination of last p values of y and y^2.
y_t = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - tForms
-
the map of transformations applied
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y and y^2) @see
ARY_Quad.apply - y
-
the response/output vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class ARYclass Forecaster_Regtrait FeatureSelectionclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The ARY_Quad companion object provides factory methods for the ARY_Quad class.
The ARY_Quad companion object provides factory methods for the ARY_Quad class.
Attributes
The Baseline class supports simple baseline time series models showing their In-Sample Testing in an easy to understand tabular format. One-step ahead forecasts are produced for all but the first time point (t = 0). Currently supports "NULL", "RW". "AR1", and "AR2".
The Baseline class supports simple baseline time series models showing their In-Sample Testing in an easy to understand tabular format. One-step ahead forecasts are produced for all but the first time point (t = 0). Currently supports "NULL", "RW". "AR1", and "AR2".
Value parameters
- mtype
-
the type of model as a string
- y
-
the time series vector
Attributes
- See also
-
otexts.com/fpp3/acf.html for Auto-Correlation Function (ACF)
- Supertypes
The DTW class is used for aligning two time series.
The DTW class is used for aligning two time series.
Value parameters
- q
-
use the L_q norm (defaults to 2 (Euclidean))
- ty
-
the corresponding date-time vector
- y
-
the first time series vector
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The Diagnoser trait provides methods to determine basic Quality of Fit QoF measures.
The Diagnoser trait provides methods to determine basic Quality of Fit QoF measures.
Value parameters
- df
-
the degrees of freedom for error
- dfm
-
the degrees of freedom for model/regression (0 or more)
- y_
-
the response vector (time series)
Attributes
- Supertypes
- Known subtypes
-
class AR_Starclass RandomWalk_Starclass VARclass Forecasterclass ARclass ARMAclass ARIMAclass Forecaster_Dclass NeuralNet_3L4TSclass ARX_Dclass ARX_Quad_Dclass ARX_Symb_Dclass ARY_Dclass Forecaster_Regclass ARXclass ARX_Quadclass ARX_Symbclass ARYclass ARY_Quadclass SARYclass NullModelclass RandomWalkclass RandomWalkSclass SimpleExpSmoothingclass SimpleMovingAverageclass TranARYclass TrendModelclass WeightedMovingAverageShow all
The Example_Covid object provides a convenient way to load Covid-19 weekly data. See test cases (odd In-ST, even TnT Split) below for Loss/Equations Optimizer (a: 1, 2) Plot and EDA - - Univariate: (b: 3, 4) Baseline Models none or CSSE none or various (c: 5, 6) AR(p) Models Yule-Walker Durbin-Levinson (d: 7, 8) ARMA(p, q=0) Models CSSE BFGS (e: 9, 10) ARY(p) Models CSSE QR Factorization (f: 11, 12) ARY_D(p) Models CSSE + Direct QR Factorization (g: 13, 14) ARMA(p, q=1) Models CSSE BFGS Multivariate: (h: 15, 16) ARX(p, 2, 2) Models CSSE QR Factorization (i: 17, 18) ARX_D Models CSSE + Direct QR Factorization (j: 19, 20) ARX_Quad_D Models CSSE QR Factorization
The Example_Covid object provides a convenient way to load Covid-19 weekly data. See test cases (odd In-ST, even TnT Split) below for Loss/Equations Optimizer (a: 1, 2) Plot and EDA - - Univariate: (b: 3, 4) Baseline Models none or CSSE none or various (c: 5, 6) AR(p) Models Yule-Walker Durbin-Levinson (d: 7, 8) ARMA(p, q=0) Models CSSE BFGS (e: 9, 10) ARY(p) Models CSSE QR Factorization (f: 11, 12) ARY_D(p) Models CSSE + Direct QR Factorization (g: 13, 14) ARMA(p, q=1) Models CSSE BFGS Multivariate: (h: 15, 16) ARX(p, 2, 2) Models CSSE QR Factorization (i: 17, 18) ARX_D Models CSSE + Direct QR Factorization (j: 19, 20) ARX_Quad_D Models CSSE QR Factorization
Known Bugs: 13, 14
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Example_Covid.type
The Example_GasFurnace object provides a convenient way to load gas_furnace data.
The Example_GasFurnace object provides a convenient way to load gas_furnace data.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Example_GasFurnace.type
The Example_ILI object provides a convenient way to load ILI weekly data.
The Example_ILI object provides a convenient way to load ILI weekly data.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Example_ILI.type
The Example_LakeLevels provides a simple example time-series for testing forecasting models.
The Example_LakeLevels provides a simple example time-series for testing forecasting models.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Example_LakeLevels.type
The ForecastMatrix trait provides a common framework for holding forecasts over time and multiple horizons.
The ForecastMatrix trait provides a common framework for holding forecasts over time and multiple horizons.
Value parameters
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- tRng
-
the time vector, if relevant (index as time may suffice)
- y
-
the response vector (time series data)
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class Forecasterclass ARclass ARMAclass ARIMAclass Forecaster_Dclass NeuralNet_3L4TSclass ARX_Dclass ARX_Quad_Dclass ARX_Symb_Dclass ARY_Dclass Forecaster_Regclass ARXclass ARX_Quadclass ARX_Symbclass ARYclass ARY_Quadclass SARYclass NullModelclass RandomWalkclass RandomWalkSclass SimpleExpSmoothingclass SimpleMovingAverageclass TranARYclass TrendModelclass WeightedMovingAverageShow all
The Forecaster abstract class provides a common framework for several forecasters. Note, the train method must be called first followed by test.
The Forecaster abstract class provides a common framework for several forecasters. Note, the train method must be called first followed by test.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters for models extending this abstract class
- tRng
-
the time range, if relevant (index as time may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
trait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
- Known subtypes
-
class ARclass ARMAclass ARIMAclass Forecaster_Dclass NeuralNet_3L4TSclass ARX_Dclass ARX_Quad_Dclass ARX_Symb_Dclass ARY_Dclass Forecaster_Regclass ARXclass ARX_Quadclass ARX_Symbclass ARYclass ARY_Quadclass SARYclass NullModelclass RandomWalkclass RandomWalkSclass SimpleExpSmoothingclass SimpleMovingAverageclass TranARYclass TrendModelclass WeightedMovingAverageShow all
The Forecaster companion object provides methods useful for classes extending the Forecaster abstract class, i.e., forecasting models with a single input variable.
The Forecaster companion object provides methods useful for classes extending the Forecaster abstract class, i.e., forecasting models with a single input variable.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Forecaster.type
The Forecaster_D abstract class provides a common framework for several forecasters. Note, the train_x method must be called first followed by test.
The Forecaster_D abstract class provides a common framework for several forecasters. Note, the train_x method must be called first followed by test.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters for models extending this abstract class
- tRng
-
the time range, if relevant (index as time may suffice)
- x
-
the input lagged time series data
- y
-
the response matrix (time series data per horizon)
Attributes
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
- Known subtypes
The Forecaster_Reg abstract class provides base methods for use by extending classes that utilize regression for time series forecasting.
The Forecaster_Reg abstract class provides base methods for use by extending classes that utilize regression for time series forecasting.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y and xe) @see
ARX.apply - y
-
the response/output vector (time series data)
Attributes
- Supertypes
-
trait FeatureSelectionclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
- Known subtypes
The MakeMatrix4TS trait provides factory method templates for for invoking ARX* constructors.
The MakeMatrix4TS trait provides factory method templates for for invoking ARX* constructors.
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
object ARXobject ARX_Dobject ARX_Quadobject ARX_Quad_Dobject ARX_Symbobject ARX_Symb_DShow all
The MakeMatrix4TS object provides methods for making/building matrices from lagged endogenous and exogenous variables.
The MakeMatrix4TS object provides methods for making/building matrices from lagged endogenous and exogenous variables.
Attributes
- Companion
- trait
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
MakeMatrix4TS.type
The MakeMatrix4TSY trait provides factory method templates for for invoking ARY* constructors.
The NullModel class provides basic time series analysis capabilities for NullModel models. NullModel models are often used for forecasting. Given time series data stored in vector y, its next value y_t = mean may be predicted based on its past value of y:
The NullModel class provides basic time series analysis capabilities for NullModel models. NullModel models are often used for forecasting. Given time series data stored in vector y, its next value y_t = mean may be predicted based on its past value of y:
y_t = mean + e_t
where mean is the mean of y and e_t is the new residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (none => use null)
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The Periodogram class is used to analyze the frequency specturm of a time serioes.
The Periodogram class is used to analyze the frequency specturm of a time serioes.
Value parameters
- y
-
the first time series vector
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The RandomWalk class provides basic time series analysis capabilities for RandomWalk models. RandomWalk models are often used for forecasting. Given time series data stored in vector y, its next value y_t+1 = y(t+1) may be predicted based on its past value of y:
The RandomWalk class provides basic time series analysis capabilities for RandomWalk models. RandomWalk models are often used for forecasting. Given time series data stored in vector y, its next value y_t+1 = y(t+1) may be predicted based on its past value of y:
y_t+1 = y_t + e_t+1
where y_t is the previous value of y and e_t+1 is the new residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (none => use null)
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The RandomWalk companion object provides factory methods for the RandomWalk class.
The RandomWalk companion object provides factory methods for the RandomWalk class.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RandomWalk.type
The RandomWalkS class provides basic time series analysis capabilities for RandomWalkS models. RandomWalkS models are often used for forecasting. Given time series data stored in vector y, its next value y_t is the previous value adjusted by the slope weighted by s.
The RandomWalkS class provides basic time series analysis capabilities for RandomWalkS models. RandomWalkS models are often used for forecasting. Given time series data stored in vector y, its next value y_t is the previous value adjusted by the slope weighted by s.
y_t = y_t-1 + s (y_t-1 - y_t-2) + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
RandomWalkS.hp) - tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The RandomWalkS companion object provides factory methods for the RandomWalkS class.
The RandomWalkS companion object provides factory methods for the RandomWalkS class.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RandomWalkS.type
The SARY class provides basic time series analysis capabilities for SARY models. SARY models utilize multiple linear regression based on lagged values of y. Given time series data stored in vector y, its next value y_t = combination of last p values of y.
The SARY class provides basic time series analysis capabilities for SARY models. SARY models utilize multiple linear regression based on lagged values of y. Given time series data stored in vector y, its next value y_t = combination of last p values of y.
y_t = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- fname
-
the feature/variable names
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y) @see
SARY.apply - y
-
the response/output vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class ARYclass Forecaster_Regtrait FeatureSelectionclass Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The SimpleExpSmoothing class provides basic time series analysis capabilities for Simple Exponential Smoothing models. SimpleExpSmoothing models are often used for forecasting. Given time series data stored in vector y, its next value y_t = mean of last q values.
The SimpleExpSmoothing class provides basic time series analysis capabilities for Simple Exponential Smoothing models. SimpleExpSmoothing models are often used for forecasting. Given time series data stored in vector y, its next value y_t = mean of last q values.
s_t = α y_t-1 + (1 - α) s_t-1 smoothing equation
yf_t = s_t forecast equation
where vector s is the smoothed version of vector y.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to SimpleExpSmoothing.hp)`
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The SimpleExpSmoothing companion object provides factory methods for the SimpleExpSmoothing class.
The SimpleExpSmoothing companion object provides factory methods for the SimpleExpSmoothing class.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SimpleExpSmoothing.type
The SimpleMovingAverage class provides basic time series analysis capabilities for SimpleMovingAverage models. SimpleMovingAverage models are often used for forecasting. Given time series data stored in vector y, its next value y_t = mean of last q values.
The SimpleMovingAverage class provides basic time series analysis capabilities for SimpleMovingAverage models. SimpleMovingAverage models are often used for forecasting. Given time series data stored in vector y, its next value y_t = mean of last q values.
y_t = mean (y_t-1, ..., y_t-q) + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to SimpleMovingAverage.hp)
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The SimpleMovingAverage companion object provides factory methods for the SimpleMovingAverage class.
The SimpleMovingAverage companion object provides factory methods for the SimpleMovingAverage class.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SimpleMovingAverage.type
The companion object for KPSS class, containing critical value coefficients needed in KPSS tests for Time Series Stationarity around a deterministic trend.
The companion object for KPSS class, containing critical value coefficients needed in KPSS tests for Time Series Stationarity around a deterministic trend.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Stationarity_KPSS.type
The KPSS class provides capabilities of performing KPSS test to determine if a time series is stationary around a deterministic trend. This code is translated from the C++ code found in
The KPSS class provides capabilities of performing KPSS test to determine if a time series is stationary around a deterministic trend. This code is translated from the C++ code found in
Value parameters
- lagsType_
-
type of lags, long or short
- lags_
-
the number of lags to use
- trend_
-
type of trend to test for
- yy
-
the original time series vector
Attributes
- See also
-
github.com/olmallet81/URT.
- Companion
- object
- Supertypes
The TranARY class provides basic time series analysis capabilities for TranARY models. TranARY models are often used for forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
The TranARY class provides basic time series analysis capabilities for TranARY models. TranARY models are often used for forecasting. Given time series data stored in vector y, its next value y_t = combination of last p values.
tran (y_t) = b dot x_t + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to
MakeMatrix4TS.hp) - itran
-
the inverse transformation to return to the original scale (defaults to expm1)
- tRng
-
the time range, if relevant (time index may suffice)
- x
-
the data/input matrix (lagged columns of y) @see
ARY.apply - y
-
the response/output vector (time series data)
Attributes
- See also
-
TranARY.applyfor applying transformations (tran, itran) - Companion
- object
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The TrendModel class provides basic time series analysis capabilities for TrendModel models. TrendModel models are often used for forecasting. Given time series data stored in vector y, its next value y_t = f(t) = b_0 + b_1 t.
The TrendModel class provides basic time series analysis capabilities for TrendModel models. TrendModel models are often used for forecasting. Given time series data stored in vector y, its next value y_t = f(t) = b_0 + b_1 t.
y_t = f(t) + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (none => use null)
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The TrendModel companion object provides factory methods for the TrendModel class.
The TrendModel companion object provides factory methods for the TrendModel class.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
TrendModel.type
The UnitRoot trait provides a common framework for various unit root testers for Time Series Stationarity. This code is translated from the C++ code found in
The UnitRoot trait provides a common framework for various unit root testers for Time Series Stationarity. This code is translated from the C++ code found in
Value parameters
- lags
-
the number of lags to use
- lagsType
-
default lags value long or short time-series
- nobs
-
the number of observations (length of time-series)
- testName
-
the name of test, e.g., KPSS
- trend
-
type of trend to test for
- validTrends
-
vector of test valid trends types, e.g., constant, linear trend
Attributes
- See also
-
github.com/olmallet81/URT.
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class Stationarity_KPSS
The WeightedMovingAverage class provides basic time series analysis capabilities for WeightedMovingAverage models. WeightedMovingAverage models are often used for forecasting. Given time series data stored in vector y, its next value y_t = weighted mean of last q values.
The WeightedMovingAverage class provides basic time series analysis capabilities for WeightedMovingAverage models. WeightedMovingAverage models are often used for forecasting. Given time series data stored in vector y, its next value y_t = weighted mean of last q values.
y_t = weighted-mean (y_t-1, ..., y_t-q) + e_t
where y_t is the value of y at time t and e_t is the residual/error term.
Value parameters
- bakcast
-
whether a backcasted value is prepended to the time series (defaults to false)
- hh
-
the maximum forecasting horizon (h = 1 to hh)
- hparam
-
the hyper-parameters (defaults to SimpleMovingAverage.hp)
- tRng
-
the time range, if relevant (time index may suffice)
- y
-
the response vector (time series data)
Attributes
- Companion
- object
- Supertypes
-
class Forecastertrait Modeltrait ForecastMatrixclass Diagnosertrait Fittrait FitMclass Objecttrait Matchableclass AnyShow all
The WeightedMovingAverage companion object provides factory methods for the WeightedMovingAverage class.
The WeightedMovingAverage companion object provides factory methods for the WeightedMovingAverage class.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Types
The TransformMap type and its extension methods provides maps of transforms.
The TransformMap type and its extension methods provides maps of transforms.
Attributes
Value members
Concrete methods
The aRIMATest main function tests the ARIMA class on simulated data. Test predictions (one step ahead forecasts).
The aRIMATest main function tests the ARIMA class on simulated data. Test predictions (one step ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRIMATest
The aRIMATest2 main function tests the ARIMA class on real data: Forecasting lake levels. Test predictions (one step ahead forecasts) with no differencing
The aRIMATest2 main function tests the ARIMA class on real data: Forecasting lake levels. Test predictions (one step ahead forecasts) with no differencing
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRIMATest2
The aRIMATest3 main function tests the ARIMA class on real data: Forecasting lake levels. Test predictions (one step ahead forecasts) taking one difference.
The aRIMATest3 main function tests the ARIMA class on real data: Forecasting lake levels. Test predictions (one step ahead forecasts) taking one difference.
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRIMATest3
The aRIMA_diffTest main function tests the ARIMA_diff object on real data: Forecasting lake levels comparing ARMA, AR1MA, Differenced ARMA, Transformed-Back Differenced ARMA. Observe that backform is better than undiff on predictions.
The aRIMA_diffTest main function tests the ARIMA_diff object on real data: Forecasting lake levels comparing ARMA, AR1MA, Differenced ARMA, Transformed-Back Differenced ARMA. Observe that backform is better than undiff on predictions.
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRIMA_diffTest
The aRMATest main function tests the ARMA class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRMATest main function tests the ARMA class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRMATest
The aRMATest2 main function tests the ARMA class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRMATest2 main function tests the ARMA class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRMATest2
The aRMATest3 main function tests the ARMA class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). Comparison of sMAPE for AR(p), ARY(p), ARY_D(p), ARMA(p, 0), and ARMA(p, 1). Note ARX (p, 1, 0), where 0 => no exo vars, duplicates results of ARY(p)
The aRMATest3 main function tests the ARMA class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). Comparison of sMAPE for AR(p), ARY(p), ARY_D(p), ARMA(p, 0), and ARMA(p, 1). Note ARX (p, 1, 0), where 0 => no exo vars, duplicates results of ARY(p)
19.0371, 29.5797, 39.0740, 47.4638, 55.1785, 62.1818 RW
18.7298, 28.4908, 37.0997, 45.6487, 51.7248, 56.3708 AR(1) 18.5808, 28.3362, 37.2485, 45.7846, 52.0362, 56.9114 ARY(1) 18.5808, 28.8144, 37.7469, 44.8006, 49.8166, 52.3205 ARY_D(1) 18.5788, 28.3364, 37.2530, 45.7883, 52.0403, 56.9181 ARY_Quad(1) 18.7095, 28.4690, 37.1203, 45.6688, 51.7687, 56.4467 ARMA(1, 0) 17.0508, 26.4669, 35.4906, 43.5707, 49.4949, 54.2347 ARMA(1, 1)
16.3579, 24.7155, 33.0480, 40.0707, 46.0049, 50.8265 AR(2) 16.2270, 23.3708, 31.6615, 38.7385, 44.7630, 50.0814 ARY(2) 16.2270, 22.9698, 30.0933, 35.4960, 40.7977, 46.2700 ARY_D(2) 16.2663, 22.6643, 31.0768, 37.7388, 44.2476, 50.0283 ARY_Quad(2) 19.0826, 29.2723, 37.2914, 44.2636, 49.8307, 53.6992 ARMA(2, 0) 17.0445, 26.6538, 35.5239, 42.9937, 48.7679, 53.3489 ARMA(2, 1)
16.0114, 22.7408, 29.5631, 35.2773, 40.9870, 45.8408 AR(3) 15.7509, 21.9972, 28.8976, 34.6815, 40.7375, 46.1590 ARY(3) 15.7509, 21.8745, 28.2745, 32.9840, 39.1694, 43.9673 ARY_D(3) 15.7262, 21.2578, 28.4101, 34.1532, 40.6659 46.1492 ARY_Quad(3) 16.7027, 23.4111, 30.5995, 36.7396, 42.6680, 47.1189 ARMA(3, 0) 16.1750, 23.1243, 30.8535, 37.1636, 43.0417, 48.2946 ARMA(3, 1)
15.8988, 22.5738, 28.5298, 33.3360, 39.1586, 43.1606 AR(4) 15.6423, 21.7982, 27.9006, 33.1000, 39.0543, 43.9748 ARY(5) 15.6423, 21.8663, 28.0034, 32.9898, 38.9927, 43.6218 ARY_D(4) 15.5814, 21.2352, 28.5489, 34.4369, 40.3618, 45.2605 ARY_Quad(4) 16.6457, 22.9684, 29.0629, 34.6601, 40.1521, 44.0896 ARMA(4, 0) 15.3290, 21.9965, 27.8397, 34.3507, 40.0857, 45.8402 ARMA(4, 1)
15.9279, 22.5769, 28.5035, 33.3019, 39.1381, 43.0520 AR(5) 15.6349, 21.8003, 27.9084, 33.1127, 39.0628, 44.0175 ARY(5) 15.6349, 21.7885, 28.0114, 33.0117, 39.1418, 43.7715 ARY_D(5) 15.3209, 21.3541, 28.9325, 35.1359, 41.0300, 45.8558 ARY_Quad(5) 16.3720, 22.8047, 28.7702, 33.9232, 39.5677, 43.2628 ARMA(5, 0) 15.3361, 21.9121, 27.6568, 34.0218, 39.6254, 45.2994 ARMA(5, 1)
runMain scalation.modeling.forecasting.aRMATest3
Attributes
The aRMATest4 main function tests the ARMA class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts). Comparison of sMAPE for AR(p), ARY(p), ARY_D(p), ARMA(p, 0), and ARMA(p, 1).
The aRMATest4 main function tests the ARMA class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts). Comparison of sMAPE for AR(p), ARY(p), ARY_D(p), ARMA(p, 0), and ARMA(p, 1).
19.1334, 31.1906, 44.3787, 55.1576, 65.1810, 74.0524 AR(1) 19.0397, 30.4570, 43.9113, 54.9642, 65.3163, 74.2124 ARY(1) 19.1718, 30.7038, 44.5265, 55.7794, 66.3876, 75.6566 ARMA(1, 0) 18.3012, 29.3224, 43.0369, 54.5719, 64.9230, 74.2520 ARMA(1, 1)
16.6447, 26.9109, 39.8106, 50.8595, 60.2176, 68.6317 AR(2) 16.8833, 26.4824, 39.2329, 50.8677, 61.0624, 70.3218 ARY(2) 19.4256, 32.8815, 46.4279, 57.2199, 66.8651, 75.3077 ARMA(2, 0) 18.3009, 30.0443, 43.6634, 54.9669, 64.8541, 73.7911 ARMA(2, 1)
15.9232, 23.5929, 34.3577, 44.1784, 53.6513, 62.0129 AR(3) 15.7190, 21.7959, 32.1395, 42.0074, 52.6874, 62.7276 ARY(3) 16.4547, 24.4668, 36.8597, 46.7958, 58.3539, 67.6623 ARMA(3, 0) 17.0353, 24.0309, 36.6585, 46.1961, 57.6348, 67.2332 ARMA(3, 1)
15.3256, 22.6893, 30.7558, 39.6274, 48.6646, 56.7375 AR(4) 14.6791, 19.9940, 26.5644, 35.4590, 41.4955, 50.8660 ARY(4) 14.9687, 22.2599, 29.6359, 39.6018, 48.2853, 56.9797 ARMA(4, 0) 15.2243, 21.4976, 27.7929, 37.9923, 45.0999, 54.3417 ARMA(4, 1)
15.9166, 21.5246, 28.0675, 36.8669, 43.3785, 51.1786 AR(5) 15.0232, 19.4222, 27.1981, 35.4744, 40.3466, 48.4066 ARY(5) 15.5426, 21.0405, 29.1731, 37.8006, 43.3590, 52.6387 ARMA(5, 0) 15.7641, 21.0723, 28.7463, 37.7968, 42.8480, 52.8277 ARMA(5, 1)
runMain scalation.modeling.forecasting.aRMATest4
Attributes
The aRMATest5 main function tests the ARMA class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). Comparison of sMAPE for ARMA(p, 1) (i.e., q = 1) for different p orders.
The aRMATest5 main function tests the ARMA class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). Comparison of sMAPE for ARMA(p, 1) (i.e., q = 1) for different p orders.
runMain scalation.modeling.forecasting.aRMATest5
Attributes
The aRMATest6 main function tests the ARMA class on small dataset. Test forecasts (h = 1 step ahead forecasts).
The aRMATest6 main function tests the ARMA class on small dataset. Test forecasts (h = 1 step ahead forecasts).
runMain scalation.modeling.forecasting.aRMATest6
Attributes
The aRMATest7 main function tests the ARMA class on small dataset. Test the generation of ARMA sequences for various p and q values.
The aRMATest7 main function tests the ARMA class on small dataset. Test the generation of ARMA sequences for various p and q values.
runMain scalation.modeling.forecasting.aRMATest7
Attributes
The aRTest main function tests the AR class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRTest main function tests the AR class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRTest
The aRTest2 main function tests the AR class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRTest2 main function tests the AR class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRTest2
The aRTest3 main function tests the AR class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRTest3 main function tests the AR class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRTest3
Attributes
The aRTest4 main function tests the AR class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRTest4 main function tests the AR class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRTest4
Attributes
The aRTest5 main function tests the AR class on small dataset. Test forecasts (h = 1 step ahead forecasts).
The aRTest5 main function tests the AR class on small dataset. Test forecasts (h = 1 step ahead forecasts).
runMain scalation.modeling.forecasting.aRTest5
Attributes
The aRXTest3 main function tests the ARX class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRXTest3 main function tests the ARX class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRXTest3
Attributes
The aRXTest4 main function tests the ARX class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRXTest4 main function tests the ARX class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRXTest4
Attributes
The aRXTest5 main function tests the ARX class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
The aRXTest5 main function tests the ARX class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
runMain scalation.modeling.forecasting.aRXTest5
Attributes
The aRX_DTest3 main function tests the ARX_D class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRX_DTest3 main function tests the ARX_D class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_DTest3
Attributes
The aRX_DTest4 main function tests the ARX_D class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRX_DTest4 main function tests the ARX_D class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_DTest4
Attributes
The aRX_QuadTest3 main function tests the ARX_Quad class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRX_QuadTest3 main function tests the ARX_Quad class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_QuadTest3
Attributes
The aRX_QuadTest4 main function tests the ARX_Quad class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRX_QuadTest4 main function tests the ARX_Quad class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_QuadTest4
Attributes
The aRX_QuadTest5 main function tests the ARX_Quad class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
The aRX_QuadTest5 main function tests the ARX_Quad class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
runMain scalation.modeling.forecasting.aRX_QuadTest5
Attributes
The aRX_Quad_DTest3 main function tests the ARX_Quad_D class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRX_Quad_DTest3 main function tests the ARX_Quad_D class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_Quad_DTest3
Attributes
The aRX_Quad_DTest4 main function tests the ARX_Quad_D class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRX_Quad_DTest4 main function tests the ARX_Quad_D class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_Quad_DTest4
Attributes
The aRX_SymbTest3 main function tests the ARX_Symb class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRX_SymbTest3 main function tests the ARX_Symb class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_SymbTest3
Attributes
The aRX_SymbTest4 main function tests the ARX_Symb class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRX_SymbTest4 main function tests the ARX_Symb class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_SymbTest4
Attributes
The ARX_Symb_DTest3 main function tests the ARX_Symb_D class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The ARX_Symb_DTest3 main function tests the ARX_Symb_D class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_Symb_DTest3
Attributes
The ARX_Symb_DTest4 main function tests the ARX_Symb_D class on real data: Forecasting COVID-19 using Train and Test (TnT). Test forecasts (h = 1 to hh steps ahead forecasts).
The ARX_Symb_DTest4 main function tests the ARX_Symb_D class on real data: Forecasting COVID-19 using Train and Test (TnT). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRX_Symb_DTest4
Attributes
The aRYTest main function tests the ARY class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRYTest main function tests the ARY class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRYTest
The aRYTest2 main function tests the ARY class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRYTest2 main function tests the ARY class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRYTest2
The aRYTest3 main function tests the ARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRYTest3 main function tests the ARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRYTest3
Attributes
The aRYTest4 main function tests the ARY class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRYTest4 main function tests the ARY class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRYTest4
Attributes
The aRYTest5 main function tests the ARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
The aRYTest5 main function tests the ARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
runMain scalation.modeling.forecasting.aRYTest5
Attributes
The aRYTest6 main function tests the ARY object's ability to make/build input matrices. Build an input/predictor data matrix for the COVID-19 dataset.
The aRYTest6 main function tests the ARY object's ability to make/build input matrices. Build an input/predictor data matrix for the COVID-19 dataset.
runMain scalation.modeling.forecasting.aRYTest6
Attributes
The aRY_DTest main function tests the ARY_D class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRY_DTest main function tests the ARY_D class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRY_DTest
The aRY_DTest2 main function tests the ARY_D class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRY_DTest2 main function tests the ARY_D class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRY_DTest2
The aRY_DTest3 main function tests the ARY_D class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRY_DTest3 main function tests the ARY_D class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRY_DTest3
Attributes
The aRY_DTest4 main function tests the ARY_D class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRY_DTest4 main function tests the ARY_D class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRY_DTest4
Attributes
The aRY_QuadTest main function tests the ARY_Quad class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRY_QuadTest main function tests the ARY_Quad class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRY_QuadTest
The aRY_QuadTest2 main function tests the ARY_Quad class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRY_QuadTest2 main function tests the ARY_Quad class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.aRY_QuadTest2
The aRY_QuadTest3 main function tests the ARY_Quad class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The aRY_QuadTest3 main function tests the ARY_Quad class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRY_QuadTest3
Attributes
The aRY_QuadTest4 main function tests the ARY_Quad class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The aRY_QuadTest4 main function tests the ARY_Quad class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.aRY_QuadTest4
Attributes
The aRY_QuadTest5 main function tests the ARY_Quad class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
The aRY_QuadTest5 main function tests the ARY_Quad class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
runMain scalation.modeling.forecasting.aRY_QuadTest5
Attributes
The baselineTest main function is used to test the Baseline class. It can performs Null, RW, AR(1), or AR(2) time series model calculations.
The baselineTest main function is used to test the Baseline class. It can performs Null, RW, AR(1), or AR(2) time series model calculations.
runMain scalation.modeling.forecasting.baselineTest
Attributes
The dTWTest main function tests the DTW class on real data.
The dTWTest main function tests the DTW class on real data.
runMain scalation.modeling.forecasting.dTWTest
Attributes
The example_CovidTest main function tests the Example_Covid object. Prints and plots the response column ("new_deaths").
The example_CovidTest main function tests the Example_Covid object. Prints and plots the response column ("new_deaths").
runMain scalation.modeling.forecasting.example_CovidTest
Attributes
The example_CovidTest10 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Lagged Regression ARY(p) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest10 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Lagged Regression ARY(p) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
19.0003, 30.3936, 43.8008, 54.8254, 65.3736, 74.5465 ARY(1) 16.8486, 26.3959, 39.1085, 50.6966, 61.0053, 70.3446 ARY(2) 15.7448, 21.8608, 31.3677, 40.9140, 51.5319, 61.5140 ARY(3) 14.7953, 20.1791, 26.5422, 35.2717, 40.7200, 48.6407 ARY(4) 14.9856, 19.5241, 27.1485, 35.1070, 40.1716, 47.1898 ARY(5) 15.0238, 21.1032, 28.4153, 36.6326, 42.5539, 49.8734 ARY(6) 15.5620, 20.7860, 29.8501, 37.1646, 43.7716, 48.4778 ARY(7) 15.1719, 23.2761, 32.2952, 40.3584, 46.1975, 51.3488 ARY(8) 14.9497, 22.5065, 31.3207, 39.5034, 45.5495, 51.4103 ARY(9) 14.4824, 21.5906, 29.9550, 37.9214, 43.3013, 52.2868 ARY(10)
FIX - discrepancy between rollValidate and diagnoseAll handled by sft parameter - why needed?
runMain scalation.modeling.forecasting.example_CovidTest10
Attributes
The example_CovidTest11 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Lagged Regression, Direct ARY_D(p) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest11 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Lagged Regression, Direct ARY_D(p) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
19.9912, 30.1349, 38.7483, 45.1096, 49.5424, 52.5320 ARY_D(1) 17.7245, 24.2871, 31.1716, 35.9357, 40.5132, 46.4806 ARY_D(2) 17.2367, 23.2007, 29.4120, 33.5757, 38.8647, 44.1707 ARY_D(3) 17.1336, 23.1984, 29.1758, 33.5773, 38.6493, 43.8045 ARY_D(4) 17.1196, 23.1224, 29.1769, 33.6120, 38.7839, 43.9346 ARY_D(5) 17.1324, 23.1273, 29.2292, 33.8956, 39.1209, 44.0869 ARY_D(6) 16.9815, 23.2879, 29.2536, 33.9433, 39.1474, 44.2361 ARY_D(7) 17.0492, 23.1888, 29.2826, 34.0878, 39.2379, 44.7474 ARY_D(8) 16.9841, 23.1090, 29.2154, 34.1249, 39.2711, 44.7709 ARY_D(9) 17.0676, 23.1089, 28.9425, 33.9046, 38.9082, 44.0469 ARY_D(10)
runMain scalation.modeling.forecasting.example_CovidTest11
Attributes
The example_CovidTest12 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Lagged Regression, Direct ARY_D(p) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest12 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Lagged Regression, Direct ARY_D(p) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
18.9312, 31.2905, 45.7578, 57.0037, 65.9690, 72.4626 ARY_D(1) 16.8059, 23.1653, 31.9736, 40.6603, 46.6809, 57.1835 ARY_D(2) 15.9031, 20.7335, 27.3975, 35.5557, 39.3269, 51.2769 ARY_D(3) 15.0132, 20.2209, 27.5774, 35.4134, 39.7899, 48.6745 ARY_D(4) 15.2338, 19.4826, 27.6054, 35.6699, 39.8746, 48.4355 ARY_D(5) 15.1603, 19.7425, 27.7367, 35.7799, 40.1055, 49.1122 ARY_D(6) 15.5484, 22.7247, 31.0076, 38.5501, 44.5176, 50.8537 ARY_D(7) 15.3248, 23.2628, 30.6794, 39.0621, 44.5661, 52.6579 ARY_D(8) 15.0875, 21.7912, 30.2152, 37.4165, 42.6637, 52.9831 ARY_D(9) 14.7569, 22.2172, 30.9435, 40.5641, 46.2016, 57.6445 ARY_D(10)
runMain scalation.modeling.forecasting.example_CovidTest12
Attributes
The example_CovidTest13 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Moving Average ARMA(p, q) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest13 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Moving Average ARMA(p, q) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
FIX - good for h = 1, but then sMAPE scores explode
runMain scalation.modeling.forecasting.example_CovidTest13
Attributes
The example_CovidTest14 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Moving Average ARMA(p, q) models for several p values. and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest14 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Moving Average ARMA(p, q) models for several p values. and horizons 1 to 6, see sMAPE metrics below:
FIX - for all h sMAPE scores have exploded
runMain scalation.modeling.forecasting.example_CovidTest14
Attributes
The example_CovidTest15 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Exogenous ARX(p, q, n) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest15 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Exogenous ARX(p, q, n) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
18.3346, 26.5990, 35.8624, 44.8289, 53.7512, 60.5086 ARX(1, 1, 2) 15.5184, 20.9192, 27.8176, 35.3589, 43.9210, 50.5047 ARX(2, 2, 2) 15.3592, 20.1736, 25.4967, 32.6258, 40.4916, 47.2481 ARX(3, 2, 2) 15.3224, 19.8423, 25.0511, 31.9170, 38.9812, 45.6829 ARX(4, 2, 2) 15.3200, 19.8433, 25.0510, 31.9146, 38.9858, 45.6849 ARX(5, 2, 2) 15.4286, 19.9065, 25.7220, 32.6493, 39.6406, 46.0115 ARX(6, 2, 2) 15.3576, 19.9718, 25.4068, 32.3474, 39.0521, 45.5616 ARX(7, 2, 2) 15.4913, 19.5610, 25.4153, 32.2240, 39.3885, 45.8530 ARX(8, 2, 2) 15.3410, 19.6328, 25.6180, 32.6323, 39.8298, 46.6052 ARX(9, 2, 2) 15.4446, 19.6831, 25.6035, 32.8968, 40.6220, 47.7878 ARX(10, 2, 2)
runMain scalation.modeling.forecasting.example_CovidTest15
Attributes
The example_CovidTest16 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Exogenous ARX(p, q, n) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest16 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Exogenous ARX(p, q, n) models for several p values, and horizons 1 to 6, see sMAPE metrics below:
12.2356, 20.6830, 35.2603, 43.9974, 51.5944, 52.0301 ARX(1, 1, 2) 9.72391, 20.6254, 25.4950, 34.2458, 44.5078, 49.9804 ARX(2, 2, 2) 10.0738, 21.4470, 26.2178, 34.2212, 44.0982, 49.4524 ARX(3, 2, 2) 9.29391, 19.6487, 22.8980, 31.6528, 41.6049, 46.9430 ARX(4, 2, 2) 10.2806, 19.2649, 23.1211, 32.1942, 41.9189, 47.2119 ARX(5, 2, 2) 11.4258, 19.7370, 24.5103, 34.4673, 44.9873, 49.7458 ARX(6, 2, 2) 11.2501, 19.0128, 22.3547, 31.9938, 42.1729, 47.1063 ARX(7, 2, 2) 10.9763, 18.8067, 22.5181, 32.0960, 41.8394, 47.1825 ARX(8, 2, 2) 11.1796, 19.3087, 23.7479, 33.1067, 42.8283, 47.6904 ARX(9, 2, 2) 10.9499, 20.6255, 25.8116, 35.5139, 45.2163, 50.0280 ARX(10, 2, 2)
runMain scalation.modeling.forecasting.example_CovidTest16
Attributes
The example_CovidTest2 main function tests the Example_Covid object. Performs Exploratory Data Analysis (EDA) to find relationships between contemporaneous variables.
The example_CovidTest2 main function tests the Example_Covid object. Performs Exploratory Data Analysis (EDA) to find relationships between contemporaneous variables.
runMain scalation.modeling.forecasting.example_CovidTest2
Attributes
The example_CovidTest3 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs several baseline models for horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest3 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs several baseline models for horizons 1 to 6, see sMAPE metrics below:
55.1927, 53.9282, 52.7133, 51.8648, 51.9621, 52.0771 Null 54.6045, 53.3254, 52.1120, 51.2903, 51.4475, 51.4937 Trend 24.2641, 31.8588, 42.4430, 50.1029, 57.4933, 63.5406 SMA 26.4055, 31.5936, 43.7356, 50.1744, 58.3506, 63.7234 WMA 18.6934, 29.1811, 38.6542, 47.1281, 54.8713, 61.9944 SES 19.0371, 29.5797, 39.0740, 47.4638, 55.1785, 62.1818 RW 18.3265, 28.7734, 38.2039, 46.7814, 54.5563, 61.7930 RWS 18.7298, 28.4908, 37.0997, 45.6487, 51.7248, 56.3708 AR(1)
runMain scalation.modeling.forecasting.example_CovidTest3
Attributes
The example_CovidTest4 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs several baseline models for horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest4 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs several baseline models for horizons 1 to 6, see sMAPE metrics below:
57.1057, 60.0825, 62.9136, 64.7453, 67.9247, 70.6674 Null 61.9077, 65.1881, 68.7187, 71.4655, 73.9327, 75.9584 Trend 22.3044, 30.4325, 45.3661, 55.7217, 67.6973, 77.4038 SMA 23.8526, 30.0945, 46.9748, 55.8104, 68.7352, 77.7010 WMA 18.3769, 27.1712, 40.3425, 51.8124, 63.7356, 75.0046 SES 18.6713, 27.5720, 40.9387, 52.3496, 64.2481, 75.3015 RW 18.0855, 26.7084, 39.6941, 51.2218, 63.1873, 74.6834 RWS 19.1590, 31.1975, 44.4850, 55.3120, 65.5536, 74.4969 AR(1)
runMain scalation.modeling.forecasting.example_CovidTest4
Attributes
The example_CovidTest5 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive AR(p) models for several p values and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest5 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive AR(p) models for several p values and horizons 1 to 6, see sMAPE metrics below:
18.7298, 28.4908, 37.0997, 45.6487, 51.7248, 56.3708 AR(1) 16.3579, 24.7155, 33.0480, 40.0707, 46.0049, 50.8265 AR(2) 16.0114, 22.7408, 29.5631, 35.2773, 40.9870, 45.8408 AR(3) 15.8988, 22.5738, 28.5298, 33.3360, 39.1586, 43.1606 AR(4) 15.9279, 22.5769, 28.5035, 33.3019, 39.1381, 43.0520 AR(5) 15.9647, 22.6143, 28.5229, 33.3735, 39.1651, 42.9640 AR(6) 16.0207, 23.2172, 29.4751, 35.2827, 41.0976, 46.1932 AR(7) 16.0501, 22.7281, 28.6740, 34.1866, 39.5963, 44.9223 AR(8) 16.0196, 22.5269, 28.4223, 34.1619, 39.7297, 44.4649 AR(9) 16.1069, 22.6213, 28.6435, 34.2722, 39.9638, 44.8023 AR(10)
runMain scalation.modeling.forecasting.example_CovidTest5
Attributes
The example_CovidTest6 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive AR(p) models for several p values and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest6 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive AR(p) models for several p values and horizons 1 to 6, see sMAPE metrics below:
19.1590, 31.1975, 44.4850, 55.3120, 65.5536, 74.4969 AR(1) 17.1764, 27.8131, 41.0173, 52.3883, 62.4018, 71.3206 AR(2) 16.1569, 24.1092, 35.0634, 45.3502, 56.0450, 65.4998 AR(3) 15.2413, 23.2293, 30.1320, 40.3648, 48.8558, 57.8766 AR(4) 15.4399, 23.3058, 30.4161, 40.4655, 49.3913, 58.6573 AR(5) 15.7443, 22.8374, 29.7678, 38.5566, 45.5084, 50.8096 AR(6) 15.8906, 24.2516, 31.1198, 40.2877, 47.4982, 56.6783 AR(7) 15.8394, 24.8442, 31.2414, 40.4416, 47.5974, 56.3880 AR(8) 15.2112, 23.6265, 30.7560, 40.1489, 49.4426, 58.3781 AR(9) 15.7954, 23.7332, 32.8467, 42.5300, 52.3179, 60.5518 AR(10)
runMain scalation.modeling.forecasting.example_CovidTest6
Attributes
The example_CovidTest7 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Moving Average ARMA(p, 0) models for several p and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest7 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Moving Average ARMA(p, 0) models for several p and horizons 1 to 6, see sMAPE metrics below:
20.2191, 29.9108, 38.1525, 45.5858, 52.2918, 57.3670 ARMA(1, 0) 17.7900, 25.3293, 33.3283, 39.5055, 44.9095, 50.6043 ARMA(2, 0) 17.4057, 23.9135, 30.5357, 35.5950, 40.6434, 46.4122 ARMA(3, 0) 17.2928, 23.6678, 29.5574, 34.0383, 38.9062, 44.1568 ARMA(4, 0) 17.2850, 23.6708, 29.5699, 34.0520, 38.9330, 44.2125 ARMA(5, 0) 17.3271, 23.9829, 29.9874, 34.6032, 39.0682, 43.6979 ARMA(6, 0) 17.2335, 24.0097, 29.9465, 34.3426, 38.9182, 44.4357 ARMA(7, 0) 17.2811, 23.7288, 29.5992, 34.0946, 38.6983, 44.1365 ARMA(8, 0) 17.2044, 23.6396, 29.5609, 34.2834, 38.9406, 44.1984 ARMA(9, 0) 17.2588, 23.6012, 29.4737, 34.3447, 39.0981, 44.1297 ARMA(10, 0)
runMain scalation.modeling.forecasting.example_CovidTest7
Attributes
The example_CovidTest8 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Moving Average ARMA(p, 0) models for several p values and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest8 main function tests the Example_Covid object. Uses Train-n-Test Split (TnT) with Rolling Validation. Runs Auto-Regressive, Moving Average ARMA(p, 0) models for several p values and horizons 1 to 6, see sMAPE metrics below:
19.0003, 30.3936, 43.8008, 54.8254, 65.3736, 74.5465 ARMA(1, 0) 17.0385, 26.7633, 39.4985, 51.0132, 61.2488, 70.4454 ARMA(2, 0) 16.0454, 22.1844, 31.7033, 41.1297, 51.6017, 61.3707 ARMA(3, 0) 15.2966, 20.7829, 27.7076, 36.3322, 41.5452, 49.0153 ARMA(4, 0) 15.6244, 20.6003, 29.0435, 36.8354, 43.1722, 48.1613 ARMA(5, 0) 15.6619, 23.1335, 32.0946, 41.3166, 50.0557, 60.0608 ARMA(6, 0) 16.0957, 22.2142, 32.4196, 39.8389, 47.6075, 51.5675 ARMA(7, 0) 15.8659, 25.6319, 36.0707, 45.6189, 54.9417, 58.8670 ARMA(8, 0) 15.5716, 24.2525, 34.1386, 44.2350, 55.1113, 60.8057 ARMA(9, 0) 14.9008, 22.6571, 30.4335, 41.6601, 50.1669, 61.2246 ARMA(10, 0)
runMain scalation.modeling.forecasting.example_CovidTest8
Attributes
The example_CovidTest9 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Lagged Regression ARY(p) models for several p values and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest9 main function tests the Example_Covid object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive, Lagged Regression ARY(p) models for several p values and horizons 1 to 6, see sMAPE metrics below:
20.1794, 29.8589, 38.1450, 45.5634, 52.3478, 57.4474 ARY(1) 17.7728, 25.1705, 33.1900, 39.4218, 44.8621, 50.5991 ARY(2) 17.3594, 23.7550, 30.3838, 35.4514, 40.5868, 46.4292 ARY(3) 17.2457, 23.5122, 29.4110, 33.9350, 38.8422, 44.2303 ARY(4) 17.2314, 23.5178, 29.4345, 33.9602, 38.9022, 44.3249 ARY(5) 17.2503, 23.8232, 29.8341, 34.4885, 39.0138, 43.8011 ARY(6) 17.1625, 23.8385, 29.8227, 34.2751, 38.9853, 44.6092 ARY(7) 17.2067, 23.5579, 29.4741, 34.0077, 38.6431, 44.3218 ARY(8) 17.1326, 23.4530, 29.4149, 34.1103, 38.8254, 44.3564 ARY(9) 17.1791, 23.4175, 29.3213, 34.1509, 38.8917, 44.2659 ARY(10)
runMain scalation.modeling.forecasting.example_CovidTest9
Attributes
The example_GasFurnaceTest main function test the Example_GasFurnace object.
The example_GasFurnaceTest main function test the Example_GasFurnace object.
runMain scalation.modeling.forecasting.example_GasFurnaceTest
Attributes
The example_GasFurnaceTest2 main function test the Example_GasFurnace object. This performs Exploratory Data Analysis (EDA) to find relationships between contemporaneous variables.
The example_GasFurnaceTest2 main function test the Example_GasFurnace object. This performs Exploratory Data Analysis (EDA) to find relationships between contemporaneous variables.
runMain scalation.modeling.forecasting.example_GasFurnaceTest2
Attributes
The example_ILITest main function test the Example_ILI object. Plots the response column.
The example_ILITest main function test the Example_ILI object. Plots the response column.
runMain scalation.modeling.forecasting.example_ILITest
Attributes
The example_ILITest10 main function test the Example_ILI object. This test compares the ARX_Symb and ARX_Symb_D models for several values of p and q.
The example_ILITest10 main function test the Example_ILI object. This test compares the ARX_Symb and ARX_Symb_D models for several values of p and q.
runMain scalation.modeling.forecasting.example_ILITest10
Attributes
The example_ILITest2 main function test the Example_ILI object. This performs Exploratory Data Analysis (EDA) to find relationships between contemporaneous variables.
The example_ILITest2 main function test the Example_ILI object. This performs Exploratory Data Analysis (EDA) to find relationships between contemporaneous variables.
runMain scalation.modeling.forecasting.example_ILITest2
Attributes
The example_ILITest3 main function tests the Example_ILI object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs several baseline models for horizons 1 to 6, see sMAPE metrics below:
The example_ILITest3 main function tests the Example_ILI object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs several baseline models for horizons 1 to 6, see sMAPE metrics below:
72.3771, 72.3020, 72.2361, 72.1766, 72.1235, 72.0677 Null 63.3460, 63.3241, 63.3049, 63.2781, 63.2447, 63.2163 Trend 14.8647, 21.3947, 30.4372, 37.5090, 44.7307, 51.0374 SMA 16.3572, 21.1826, 31.5004, 37.5687, 45.4430, 51.2477 WMA 10.7057, 19.2054, 27.4321, 35.0421, 42.2938, 48.9523 SES 10.9952, 19.5427, 27.7590, 35.3626, 42.5756, 49.2132 RW 10.4080, 18.8430, 27.0731, 34.6972, 41.9847, 48.6709 RWS 13.0155, 22.9537, 31.6664, 39.0945, 45.5909, 51.2390 AR(1)
runMain scalation.modeling.forecasting.example_ILITest3
Attributes
The example_CovidTest5 main function tests the Example_ILI object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive AR(p) models for several p values and horizons 1 to 6, see sMAPE metrics below:
The example_CovidTest5 main function tests the Example_ILI object. Uses In-Sample Testing (In-ST), i.e., train and test on the same data. Runs Auto-Regressive AR(p) models for several p values and horizons 1 to 6, see sMAPE metrics below:
13.0155, 22.9537, 31.6664, 39.0945, 45.5909, 51.2390 AR(1) 12.2138, 22.3784, 31.4101, 38.9114, 45.5691, 50.9743 AR(2) 12.1428, 22.6277, 32.1664, 39.8123, 46.2555, 51.4107 AR(3) 12.1593, 22.6250, 32.1326, 39.7545, 46.1988, 51.3480 AR(4) 12.2947, 22.7086, 31.6933, 38.7545, 44.9812, 50.1115 AR(5) 13.1465, 23.9406, 33.3826, 40.4398, 46.4482, 51.2484 AR(6) 13.1506, 23.9510, 33.3948, 40.4620, 46.4715, 51.2688 AR(7) 12.8000, 23.7886, 33.2327, 40.0353, 45.6288, 50.3420 AR(8) 12.8755, 23.7681, 33.0763, 39.8769, 45.5340, 50.3367 AR(9) 12.8060, 23.7307, 33.2322, 40.0946, 45.7090, 50.5064 AR(10)
runMain scalation.modeling.forecasting.example_ILITest5
Attributes
The example_ILITest6 main function test the Example_ILI object. This test compares the ARMA model for several values of p and q.
The example_ILITest6 main function test the Example_ILI object. This test compares the ARMA model for several values of p and q.
runMain scalation.modeling.forecasting.example_ILITest6
Attributes
The example_ILITest7 main function test the Example_ILI object. This test compares the ARY model for several values of p.
The example_ILITest7 main function test the Example_ILI object. This test compares the ARY model for several values of p.
runMain scalation.modeling.forecasting.example_ILITest7
Attributes
The example_ILITest8 main function test the Example_ILI object. This test compares the ARY_D model for several values of p.
The example_ILITest8 main function test the Example_ILI object. This test compares the ARY_D model for several values of p.
runMain scalation.modeling.forecasting.example_ILITest8
Attributes
The example_ILITest9 main function test the Example_ILI object. This test compares the ARIMA model for several values of p and q.
The example_ILITest9 main function test the Example_ILI object. This test compares the ARIMA model for several values of p and q.
runMain scalation.modeling.forecasting.example_ILITest9
Attributes
The forecastMatrixTest main function tests the RandomWalk class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The forecastMatrixTest main function tests the RandomWalk class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.forecastMatrixTest
The forecastMatrixTest2 main function tests the RandomWalk class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The forecastMatrixTest2 main function tests the RandomWalk class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.forecastMatrixTest2
The forecastMatrixTest3 main function tests the RandomWalk class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The forecastMatrixTest3 main function tests the RandomWalk class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.forecastMatrixTest3
Attributes
The forecastMatrixTest4 main function tests the RandomWalk class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The forecastMatrixTest4 main function tests the RandomWalk class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.forecastMatrixTest4
Attributes
The makeTSeries top level function generates time-series data.
The makeTSeries top level function generates time-series data.
Value parameters
- m
-
the length of the time series
- noise
-
the random variate generator used for the noise part
- signal
-
the function of time used to make the deterministic part
Attributes
The makeTSeries top level function recursively generates time-series data by simulating and AR process. y_t+1 = δ + Σ(φ_j y_t-j) + e_t+1 Note: all defaults generates white noise with variance 1
The makeTSeries top level function recursively generates time-series data by simulating and AR process. y_t+1 = δ + Σ(φ_j y_t-j) + e_t+1 Note: all defaults generates white noise with variance 1
Value parameters
- c
-
the initial value for the time series
- m
-
the length of the time series
- noise
-
the random variate generator used for the noise part
- φ
-
the auto-regressive coefficients
Attributes
The nullModelTest main function tests the NullModel class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The nullModelTest main function tests the NullModel class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.nullModelTest
The nullModelTest2 main function tests the NullModel class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The nullModelTest2 main function tests the NullModel class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.nullModelTest2
The nullModelTest3 main function tests the NullModel class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The nullModelTest3 main function tests the NullModel class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.nullModelTest3
Attributes
The nullModelTest4 main function tests the NullModel class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The nullModelTest4 main function tests the NullModel class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.nullModelTest4
Attributes
The nullModelTest5 main function tests the NullModel class on small dataset. Test forecasts (h = 1 step ahead forecasts).
The nullModelTest5 main function tests the NullModel class on small dataset. Test forecasts (h = 1 step ahead forecasts).
runMain scalation.modeling.forecasting.nullModelTest5
Attributes
The periodogramTest main function tests the Periodogram class on real data.
The periodogramTest main function tests the Periodogram class on real data.
runMain scalation.modeling.forecasting.periodogramTest
Attributes
The randomWalkSTest main function tests the RandomWalkS class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The randomWalkSTest main function tests the RandomWalkS class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.randomWalkSTest
The randomWalkSTest2 main function tests the RandomWalkS class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The randomWalkSTest2 main function tests the RandomWalkS class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.randomWalkSTest2
The randomWalkSTest3 main function tests the RandomWalkS class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The randomWalkSTest3 main function tests the RandomWalkS class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.randomWalkSTest3
Attributes
The randomWalkSTest4 main function tests the RandomWalkS class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The randomWalkSTest4 main function tests the RandomWalkS class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.randomWalkSTest4
Attributes
The randomWalkTest main function tests the RandomWalk class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The randomWalkTest main function tests the RandomWalk class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.randomWalkTest
The randomWalkTest2 main function tests the RandomWalk class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The randomWalkTest2 main function tests the RandomWalk class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.randomWalkTest2
The randomWalkTest3 main function tests the RandomWalk class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The randomWalkTest3 main function tests the RandomWalk class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.randomWalkTest3
Attributes
The randomWalkTest4 main function tests the RandomWalk class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The randomWalkTest4 main function tests the RandomWalk class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.randomWalkTest4
Attributes
The randomWalkTest5 main function tests the RandomWalk class on small dataset. Test forecasts (h = 1 step ahead forecasts).
The randomWalkTest5 main function tests the RandomWalk class on small dataset. Test forecasts (h = 1 step ahead forecasts).
runMain scalation.modeling.forecasting.randomWalkTest5
Attributes
The randomWalkTest6 main function tests the RandomWalk class on small dataset. Test forecasts (h = 1 step ahead forecasts).
The randomWalkTest6 main function tests the RandomWalk class on small dataset. Test forecasts (h = 1 step ahead forecasts).
runMain scalation.modeling.forecasting.randomWalkTest6
Value parameters
- stm
-
the random number stream to use (command-line argument, e.g., 2)
Attributes
The RYTest main function tests the SARY class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The RYTest main function tests the SARY class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.sARYTest
The sARYTest2 main function tests the SARY class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The sARYTest2 main function tests the SARY class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.sARYTest2
The sARYTest3 main function tests the SARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The sARYTest3 main function tests the SARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.sARYTest3
Attributes
The sARYTest4 main function tests the SARY class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The sARYTest4 main function tests the SARY class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.sARYTest4
Attributes
The sARYTest5 main function tests the SARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
The sARYTest5 main function tests the SARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts). This version performs feature selection.
runMain scalation.modeling.forecasting.sARYTest5
Attributes
The simpleExpSmoothingTest main function tests the SimpleExpSmoothing class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The simpleExpSmoothingTest main function tests the SimpleExpSmoothing class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.simpleExpSmoothingTest
The simpleExpSmoothingTest2 main function tests the SimpleExpSmoothing class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The simpleExpSmoothingTest2 main function tests the SimpleExpSmoothing class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.simpleExpSmoothingTest2
The simpleExpSmoothingTest3 main function tests the SimpleExpSmoothing class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The simpleExpSmoothingTest3 main function tests the SimpleExpSmoothing class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.simpleExpSmoothingTest3
Attributes
The simpleExpSmoothingTest4 main function tests the SimpleExpSmoothing class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The simpleExpSmoothingTest4 main function tests the SimpleExpSmoothing class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.simpleExpSmoothingTest4
Attributes
The simpleMovingAverageTest main function tests the SimpleMovingAverage class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The simpleMovingAverageTest main function tests the SimpleMovingAverage class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.simpleMovingAverageTest
The simpleMovingAverageTest2 main function tests the SimpleMovingAverage class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The simpleMovingAverageTest2 main function tests the SimpleMovingAverage class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.simpleMovingAverageTest2
The simpleMovingAverageTest3 main function tests the SimpleMovingAverage class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The simpleMovingAverageTest3 main function tests the SimpleMovingAverage class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.simpleMovingAverageTest3
Attributes
The simpleMovingAverageTest4 main function tests the SimpleMovingAverage class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The simpleMovingAverageTest4 main function tests the SimpleMovingAverage class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.simpleMovingAverageTest4
Attributes
The stationarity_KPSSTest main function is used to test the Stationarity_KPSS class. Test whether white noise time-series has a unit root.
The stationarity_KPSSTest main function is used to test the Stationarity_KPSS class. Test whether white noise time-series has a unit root.
runMain scalation.modeling.forecasting.stationarity_KPSSTest
Attributes
The stationarity_KPSSTest2 main function is used to test the Stationarity_KPSS class. Test whether the Lake Levels time-series has a unit root.
The stationarity_KPSSTest2 main function is used to test the Stationarity_KPSS class. Test whether the Lake Levels time-series has a unit root.
runMain scalation.modeling.forecasting.stationarity_KPSSTest2
Attributes
The stationarity_KPSSTest3 main function is used to test the Stationarity_KPSS class. Test whether the differenced Lake Levels time-series has a unit root.
The stationarity_KPSSTest3 main function is used to test the Stationarity_KPSS class. Test whether the differenced Lake Levels time-series has a unit root.
runMain scalation.modeling.forecasting.stationarity_KPSSTest3
Attributes
The stationaryTest main function tests the Stationary class on a simulated time-series.
The stationaryTest main function tests the Stationary class on a simulated time-series.
runMain scalation.modeling.forecasting.stationaryTest
Attributes
The stationaryTest2 main function tests the Stationary class on a simulated stationary time-series. An AR(1) is a stationary process when |φ_1| < 1, a unit root process when |φ_1| = 1, and explosive otherwise.
The stationaryTest2 main function tests the Stationary class on a simulated stationary time-series. An AR(1) is a stationary process when |φ_1| < 1, a unit root process when |φ_1| = 1, and explosive otherwise.
runMain scalation.modeling.forecasting.stationaryTest2
Attributes
The stationaryTest3 main function tests the Stationary class on a simulated stationary time-series. An AR(2) is a stationary process when |φ_2| < 1 and |φ_1| < 1 - φ_2, a unit root process when |φ_2| = 1 or |φ_1| = 1 - φ_2, and explosive otherwise.
The stationaryTest3 main function tests the Stationary class on a simulated stationary time-series. An AR(2) is a stationary process when |φ_2| < 1 and |φ_1| < 1 - φ_2, a unit root process when |φ_2| = 1 or |φ_1| = 1 - φ_2, and explosive otherwise.
runMain scalation.modeling.forecasting.stationaryTest3
Attributes
The tranARYTest main function tests the TranARY class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The tranARYTest main function tests the TranARY class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.traARYTest
The tranARYTest2 main function tests the TranARY class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The tranARYTest2 main function tests the TranARY class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.tranARYTest2
The tranARYTest3 main function tests the TranARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The tranARYTest3 main function tests the TranARY class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.tranARYTest3
Attributes
The tranARYTest4 main function tests the TranARY class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The tranARYTest4 main function tests the TranARY class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.tranARYTest4
Attributes
The trendModelTest main function tests the TrendModel class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The trendModelTest main function tests the TrendModel class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.trendModelTest
The trendModelTest2 main function tests the TrendModel class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The trendModelTest2 main function tests the TrendModel class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.trendModelTest2
The trendModelTest3 main function tests the TrendModel class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The trendModelTest3 main function tests the TrendModel class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.trendModelTest3
Attributes
The trendModelTest4 main function tests the TrendModel class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The trendModelTest4 main function tests the TrendModel class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.trendModelTest4
Attributes
The weightedMovingAverageTest main function tests the WeightedMovingAverage class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The weightedMovingAverageTest main function tests the WeightedMovingAverage class on real data: Forecasting Lake Levels using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.weightedMovingAverageTest
The weightedMovingAverageTest2 main function tests the WeightedMovingAverage class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The weightedMovingAverageTest2 main function tests the WeightedMovingAverage class on real data: Forecasting Lake Levels using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
Attributes
- See also
-
cran.r-project.org/web/packages/fpp/fpp.pdf
runMain scalation.modeling.forecasting.weightedMovingAverageTest2
The weightedMovingAverageTest3 main function tests the WeightedMovingAverage class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
The weightedMovingAverageTest3 main function tests the WeightedMovingAverage class on real data: Forecasting COVID-19 using In-Sample Testing (In-ST). Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.weightedMovingAverageTest3
Attributes
The weightedMovingAverageTest4 main function tests the WeightedMovingAverage class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
The weightedMovingAverageTest4 main function tests the WeightedMovingAverage class on real data: Forecasting COVID-19 using Train-n-Test Split (TnT) with Rolling Validation. Test forecasts (h = 1 to hh steps ahead forecasts).
runMain scalation.modeling.forecasting.weightedMovingAverageTest4