NeuralNet_3L4TS

scalation.modeling.forecasting.neuralforecasting.NeuralNet_3L4TS
See theNeuralNet_3L4TS companion class
object NeuralNet_3L4TS extends Scaling

The NeuralNet_3L4TS object supports 3-layer regression-like neural networks for Time Series data. Given a response vector y, a predictor matrix x is built that consists of lagged y vectors.

Attributes

Companion
class
Graph
Supertypes
trait Scaling
class Object
trait Matchable
class Any
Self type

Members list

Value members

Concrete methods

def apply(xe: MatrixD, y: VectorD, hh: Int, fname: Array[String], tRng: Range, nz: Int, hparam: HyperParameter, f: AFF, f1: AFF, itran: FunctionV2V, bakcast: Boolean): NeuralNet_3L4TS

Create a NeuralNet_3L4TS object from a response vector. The input/data matrix x is formed from the lagged y vectors as columns in matrix x.

Create a NeuralNet_3L4TS object from a response vector. The input/data matrix x is formed from the lagged y vectors as columns in matrix x.

Value parameters

bakcast

whether a backcasted value is prepended to the time series (defaults to false)

f

the activation function family for layers 1->2 (input to hidden)

f1

the activation function family for layers 2->3 (hidden to output)

fname

the feature/variable names

hh

the maximum forecasting horizon (h = 1 to hh)

hparam

the hyper-parameters (use MakeMatrix4TS.hp ++ Optimizer.hp for default)

itran

the inverse transformation function returns response matrix to original scale

nz

the number of nodes in hidden layer (-1 => use default formula)

tRng

the time range, if relevant (time index may suffice)

xe

the matrix of exogenous variable values

y

the original un-expanded output/response vector

Attributes

def rescale(xe: MatrixD, y: VectorD, hh: Int, fname: Array[String], tRng: Range, nz: Int, hparam: HyperParameter, f: AFF, f1: AFF, bakcast: Boolean): NeuralNet_3L4TS

Create a NeuralNet_3L4TS with automatic rescaling from a data matrix and response matrix.

Create a NeuralNet_3L4TS with automatic rescaling from a data matrix and response matrix.

Value parameters

bakcast

whether a backcasted value is prepended to the time series (defaults to false)

f

the activation function family for layers 1->2 (input to hidden)

f1

the activation function family for layers 2->3 (hidden to output)

fname

the feature/variable names

hh

the maximum forecasting horizon (h = 1 to hh)

hparam

the hyper-parameters

nz

the number of nodes in hidden layer (-1 => use default formula)

tRng

the time range, if relevant (time index may suffice)

xe

the matrix of exogenous variable values

y

the original un-expanded output/response vector

Attributes

Inherited methods

def setScale(scale_: Boolean): Unit

Set the scale flag to the given value.

Set the scale flag to the given value.

Value parameters

scale_

the new value for the scale flag

Attributes

Inherited from:
Scaling

Inherited fields

protected var scale: Boolean

The 'scale' flag indicated whether the data is to be rescaled/normalized

The 'scale' flag indicated whether the data is to be rescaled/normalized

Attributes

Inherited from:
Scaling