scalation.mathstat
Members list
Type members
Classlikes
Value parameters
- a
-
the m-by-n matrix to bidiagonalize (requires m >= n)
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The Canvas class provides a canvas on which to draw the plot.
The Canvas class provides a canvas on which to draw the plot.
Value parameters
- height
-
the frame height
- lines
-
flag for generating a line plot
- width
-
the frame width
- x
-
the x vector of data values (horizontal)
- y
-
the y vector of data values (primary vertical)
- z
-
the z vector of data values (secondary vertical) to compare with y
Attributes
- Supertypes
-
trait ZoomablePaneltrait MouseMotionListenertrait MouseListenertrait MouseWheelListenertrait EventListenerclass JPaneltrait Accessibleclass JComponentclass Containerclass Componenttrait Serializabletrait MenuContainertrait ImageObserverclass Objecttrait Matchableclass AnyShow all
The Combinatorics object provides several common combinatorics functions, such as factorial permutations, combinations, gamma and beta functions.
The Combinatorics object provides several common combinatorics functions, such as factorial permutations, combinations, gamma and beta functions.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Combinatorics.type
The Complex class is used to represent and operate on complex numbers. Internally, a complex number is represented as two double precision floating point numbers (Double). Externally, two forms are supported:
The Complex class is used to represent and operate on complex numbers. Internally, a complex number is represented as two double precision floating point numbers (Double). Externally, two forms are supported:
a+bi = 2.1+3.2i via: Complex ("2.1+3.2i"), 'toString'
(a, b) = (2.1, 3.2) via: create ("(2.1, 3.2)"), 'toString2'
Note: 'i * i = -1'.
Value parameters
- im
-
the imaginary part (e.g., 3.2)
- re
-
the real part (e.g., 2.1)
Attributes
- Companion
- object
- Supertypes
The Complex companion object defines the origin (zero) and the four roots of unity as well as some utility functions.
The Correlogram trait provides functions for computing the Auto-Correlation Function (ACF) and the Partial Auto-Correlation Function (PACF).
The Correlogram trait provides functions for computing the Auto-Correlation Function (ACF) and the Partial Auto-Correlation Function (PACF).
Value parameters
- adjusted
-
whether to adjust to account for the number of elements in the sum Σ (or use dim-1)
- y
-
the time series data (response vector)
Attributes
- See also
-
VectorD.acov - Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class ARclass ARMAclass ARIMAclass ARclass ARMAclass NullModelclass QuadSplineclass RandomWalkclass SimpleExpSmoothingclass SimpleMovingAverageclass TrendModelclass WeightedMovingAverageShow all
The Eigenvalue class is used to find the eigenvalues of an n-by-n matrix a using an iterative technique that applies similarity transformations to convert a into an upper triangular matrix, so that the eigenvalues appear along the diagonal. To improve performance, the a matrix is first reduced to Hessenburg form. During the iterative steps, a shifted QR decomposition is performed. Caveats: (1) it will not handle eigenvalues that are complex numbers, (2) it uses a simple shifting strategy that may slow convergence.
The Eigenvalue class is used to find the eigenvalues of an n-by-n matrix a using an iterative technique that applies similarity transformations to convert a into an upper triangular matrix, so that the eigenvalues appear along the diagonal. To improve performance, the a matrix is first reduced to Hessenburg form. During the iterative steps, a shifted QR decomposition is performed. Caveats: (1) it will not handle eigenvalues that are complex numbers, (2) it uses a simple shifting strategy that may slow convergence.
Value parameters
- a
-
the matrix whose eigenvalues are sought
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The EigenvalueSym class is used to find the eigenvalues of an n-by-n symmetric matrix a using an iterative technique, the Symmetric QR Algorithm.
The EigenvalueSym class is used to find the eigenvalues of an n-by-n symmetric matrix a using an iterative technique, the Symmetric QR Algorithm.
Value parameters
- a
-
the symmetric matrix whose eigenvalues are sought
Attributes
- See also
-
Algorithm 8.3.3 in Matrix Computations. Caveats: (1) it will not handle eigenvalues that are complex numbers, (2) it uses a simple shifting strategy that may slow convergence.
- Supertypes
-
class Objecttrait Matchableclass Any
The Eigenvector class is used to find the eigenvectors of an n-by-n matrix a by solving equations of the form (a - eI)v = 0 where e is the eigenvalue and v is the eigenvector. Place the eigenvectors in a matrix column-wise.
The Eigenvector class is used to find the eigenvectors of an n-by-n matrix a by solving equations of the form (a - eI)v = 0 where e is the eigenvalue and v is the eigenvector. Place the eigenvectors in a matrix column-wise.
Value parameters
- _e
-
the vector of eigenvalues of matrix a
- a
-
the matrix whose eigenvectors are sought
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The Fac_Cholesky class provides methods to factor an n-by-n symmetric, positive definite matrix a into the product of two matrices: l - an n-by-n left lower triangular matrix l.t - an n-by-n right upper triangular matrix - transpose of l such that a = l * l.t.
The Fac_Cholesky class provides methods to factor an n-by-n symmetric, positive definite matrix a into the product of two matrices: l - an n-by-n left lower triangular matrix l.t - an n-by-n right upper triangular matrix - transpose of l such that a = l * l.t.
Value parameters
- a
-
the symmetric, positive definite matrix to be factored
Attributes
- Supertypes
The Fac_Inverse class provides methods to factor an n-by-n identity matrix I into the product of two matrices a and a^-1 a * a^-1 = I where a is the given matrix and a^-1 is its inverse.
The Fac_Inverse class provides methods to factor an n-by-n identity matrix I into the product of two matrices a and a^-1 a * a^-1 = I where a is the given matrix and a^-1 is its inverse.
Value parameters
- a
-
the given n-by-n square matrix
Attributes
- Companion
- object
- Supertypes
The Fac_Inverse companion object provides methods for matrix imversion.
The Fac_Inverse companion object provides methods for matrix imversion.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Fac_Inverse.type
The Fac_LQ class provides methods to factor an 'm-by-n' matrix 'aa' into the product of two matrices, when m < n. 'l' - an 'm-by-m' left lower triangular matrix 'q' - an 'm-by-n' orthogonal matrix and such that 'aa = l * q'. Note, orthogonal means that 'q.t * q = I'.
The Fac_LQ class provides methods to factor an 'm-by-n' matrix 'aa' into the product of two matrices, when m < n. 'l' - an 'm-by-m' left lower triangular matrix 'q' - an 'm-by-n' orthogonal matrix and such that 'aa = l * q'. Note, orthogonal means that 'q.t * q = I'.
Value parameters
- aa
-
the matrix to be factored into l and q
Attributes
- See also
-
Fac-QR - Supertypes
The Fac_LU class provides methods to factor an m-by-n matrix into its lower and upper triangular products: A = LU when partial pivoting is not needed PA = LU where P is the permutation matrix A = QLU where Q = P.inverse where a is the given matrix, l is an m-by-n lower triangular matrix, and u is an n-by-n upper triangular matrix. The permutation matrix is represented by the piv vector. Once factored, can be used to solve a system of linear equations. Solve for x in Ax = b: Ax = QLUx = b => LUx = Pb using steps (1) and (2) (1) Solve Ly = Pb using forward substitution for y (2) Solve Ux = y using backward substitution for x
The Fac_LU class provides methods to factor an m-by-n matrix into its lower and upper triangular products: A = LU when partial pivoting is not needed PA = LU where P is the permutation matrix A = QLU where Q = P.inverse where a is the given matrix, l is an m-by-n lower triangular matrix, and u is an n-by-n upper triangular matrix. The permutation matrix is represented by the piv vector. Once factored, can be used to solve a system of linear equations. Solve for x in Ax = b: Ax = QLUx = b => LUx = Pb using steps (1) and (2) (1) Solve Ly = Pb using forward substitution for y (2) Solve Ux = y using backward substitution for x
Value parameters
- a
-
the given m-by-n rectangular matrix
Attributes
- Companion
- object
- Supertypes
The Fac_QR class provides methods to factor an m-by-n matrix a into the product of two matrices: q - an m-by-n orthogonal matrix and r - an n-by-n right upper triangular matrix such that a = q * r. It uses uses Householder orthogonalization.
The Fac_QR class provides methods to factor an m-by-n matrix a into the product of two matrices: q - an m-by-n orthogonal matrix and r - an n-by-n right upper triangular matrix such that a = q * r. It uses uses Householder orthogonalization.
Value parameters
- aa
-
the matrix to be factored into q and r
- needQ
-
flag indicating whether a full q matrix is needed
Attributes
The Fac_QR_RR class provides methods to factor an 'm-by-n' matrix 'a' into the product of two matrices: 'q' - an 'm-by-n' orthogonal matrix and 'r' - an 'n-by-n' right upper triangular matrix such that 'a = q * r'. It uses uses Householder orthogonalization.
The Fac_QR_RR class provides methods to factor an 'm-by-n' matrix 'a' into the product of two matrices: 'q' - an 'm-by-n' orthogonal matrix and 'r' - an 'n-by-n' right upper triangular matrix such that 'a = q * r'. It uses uses Householder orthogonalization.
Value parameters
- aa
-
the matrix to be factored into q and r
- needQ
-
flag indicating whether a full q matrix is needed
Attributes
- See also
-
5.1 and 5.2 in Matrix Computations
QRDecomposition.java in Jama
- Supertypes
Value parameters
- a
-
the m-by-n matrix to factor/decompose (requires m >= n)
Attributes
- Companion
- object
- Supertypes
The Fac_SVD object provides several test matrices as well as methods for making full representations, reducing dimensionality, determining rank and testing SVD factorizations.
The Factorization trait is the template for classes implementing various forms of matrix factorization.
The Factorization trait is the template for classes implementing various forms of matrix factorization.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class Fac_Choleskyclass Fac_Inverseclass Fac_LQclass Fac_LUclass Fac_QRclass Fac_QR_RRclass Fac_SVDShow all
The FramelessHistogram class should be used in embedded applications.
The FramelessHistogram class should be used in embedded applications.
Value parameters
- frameH
-
the height
- frameW
-
the width
- numIntervals
-
the number of intervals (typically 5 to 100)
- value
-
the vector of values (want several per interval)
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The FramelessPlot class is used for embedded applications.
The FramelessPlot class is used for embedded applications.
Value parameters
- height
-
the height
- width
-
the width
- x
-
the x vector of data values (horizontal)
- y
-
the y vector of data values (primary vertical)
- z
-
the z vector of data values (secondary vertical) to compare with y
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Create a canvas on which to draw the histogram.
Create a canvas on which to draw the histogram.
Value parameters
- counts
-
the counts per interval, if available
- frameH
-
the height
- frameW
-
the width
- numIntervals
-
the number of intervals (typically 5 to 100)
- value
-
the vector of values (want several per interval)
Attributes
- Supertypes
-
class JPaneltrait Accessibleclass JComponentclass Containerclass Componenttrait Serializabletrait MenuContainertrait ImageObserverclass Objecttrait Matchableclass AnyShow all
The Hessenburg class is used to reduce, via similarity transformations, an n-by-n matrix a to Hessenburg form h, where all elements two below the main diagonal are zero (or close to zero). Note, similarity transformations do not changes the eigenvalues.
The Hessenburg class is used to reduce, via similarity transformations, an n-by-n matrix a to Hessenburg form h, where all elements two below the main diagonal are zero (or close to zero). Note, similarity transformations do not changes the eigenvalues.
Value parameters
- a
-
the matrix to reduce to Hessenburg form
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The Histogram class takes a vector of values, counts the number of values in each of several intervals and displays the counts vertically in a histogram.
The Histogram class takes a vector of values, counts the number of values in each of several intervals and displays the counts vertically in a histogram.
Value parameters
- _title
-
title of the histogram
- counts
-
the counts per interval, if available
- numIntervals
-
the number of intervals (typically 5 to 100)
- value
-
the vector of values (want several per interval)
Attributes
- Supertypes
The Householder object provides methods to compute Householder vectors and reflector matrices.
The Householder object provides methods to compute Householder vectors and reflector matrices.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Householder.type
The HouseholderT class performs a Householder Tridiagonalization on a symmetric matrix.
The HouseholderT class performs a Householder Tridiagonalization on a symmetric matrix.
Value parameters
- a
-
the symmetric matrix to tridiagonalize
Attributes
- See also
-
Algorithm 8.3.1 in Matrix Computations.
- Supertypes
-
class Objecttrait Matchableclass Any
The MattixCalc class supports simple simple calculations on elements in a matrix.
The MattixCalc class supports simple simple calculations on elements in a matrix.
Value parameters
- header
-
the column names
- x
-
the matrix of data
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The MatrixD class stores and operates on Numeric Matrices of base type Double. the 'cfor' loop is used for most loops for faster execution.
The MatrixD class stores and operates on Numeric Matrices of base type Double. the 'cfor' loop is used for most loops for faster execution.
Value parameters
- dim
-
the first (row) dimension of the matrix
- dim2
-
the second (column) dimension of the matrix
- v
-
the 2D array used to store matrix elements
Attributes
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
The MatrixD2Example object provides example instances of theMatrixD2 class.
The MatrixD2Example object provides example instances of theMatrixD2 class.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
MatrixD2Example.type
The MatrixDExample object provides example instances of theMatrixD class.
The MatrixDExample object provides example instances of theMatrixD class.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
MatrixDExample.type
The MatrixDOps object provides extension methods to support scalar op matrix operations, so that one can write 2.0 + x as well as x + 2.0.
The MatrixDOps object provides extension methods to support scalar op matrix operations, so that one can write 2.0 + x as well as x + 2.0.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
MatrixDOps.type
The MatrixI object provides factory methods for classMatrixDwith integer elements. Low cost approach not requiring aMatrixI` class.
The MatrixI object provides factory methods for classMatrixDwith integer elements. Low cost approach not requiring aMatrixI` class.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
MatrixI.type
The Pivoting trait is used when row or column pivoting of a matrix is needed.
The Pivoting trait is used when row or column pivoting of a matrix is needed.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class Fac_QR_RRobject PivotingTest
The PivotingTest object is used to test the Pivoting trait.
The PivotingTest object is used to test the Pivoting trait.
runMain scalation.mathstat.PivotingTest
Attributes
- Supertypes
- Self type
-
PivotingTest.type
Zoom functionality has two options: (1) mouse wheel controls the amount of zooming (in/out); (2) mouse dragging repositions the objects in the panel (drawing canvas).
The Plot class takes x and y vectors of data values and plots the (x, y) data points. Optionally, a z vector may be plotted with y. Note, axes are determined by the x and y vectors only. For more vertical vectors use PlotM.
Zoom functionality has two options: (1) mouse wheel controls the amount of zooming (in/out); (2) mouse dragging repositions the objects in the panel (drawing canvas).
Value parameters
- _title
-
the title of the plot
- lines
-
flag for generating a line plot
- x
-
the x vector of data values (horizontal), use null to use y's index
- y
-
the y vector of data values (primary vertical, black)
- z
-
the z vector of data values (secondary vertical, red) to compare with y
Attributes
- See also
- Companion
- object
- Supertypes
Zoom functionality has two options: (1) mouse wheel controls the amount of zooming (in/out); (2) mouse dragging repositions the objects in the panel (drawing canvas).
The PlotC class takes a function f and displays color-coded values for z = f(x, y) over a two dimensional grid defined the lower lb and upper ub bounds. An optional path is included that can be used to show, for example, the search path taken by an optimizer (e.g., a Conjugate Gradient NLP solver).
Zoom functionality has two options: (1) mouse wheel controls the amount of zooming (in/out); (2) mouse dragging repositions the objects in the panel (drawing canvas).
Value parameters
- _title
-
the title of the plot
- deltaF
-
estimate of the range of possible functional values (if < 0, will be computed)
- f
-
the function whose color-coded contour plot is sought
- lb
-
the lower bounds on the plotting domain
- lbF
-
the lower bound on the functional value
- path
-
the points on a path (e.g., a search path)
- ub
-
the upper bounds on the plotting domain
Attributes
- See also
- Supertypes
Zoom functionality has two options: (1) mouse wheel controls the amount of zooming (in/out); (2) mouse dragging repositions the objects in the panel (drawing canvas).
The PlotM class takes an x vector and a y matrix of data values and plots the (x, y_i) data points for each row y_i of the matrix.
Zoom functionality has two options: (1) mouse wheel controls the amount of zooming (in/out); (2) mouse dragging repositions the objects in the panel (drawing canvas).
Value parameters
- _title
-
the title of the plot
- label
-
the label/legend/key for each curve in the plot
- lines
-
flag for generating a line plot
- x_
-
the x vector of data values (horizontal)
- y_
-
the y matrix of data values where y(i) is the i-th vector (vertical)
Attributes
- See also
- Companion
- object
- Supertypes
The PlotM companion object provides a builder method for plotting several y vectors versus an x vector.
The Probability object provides methods for operating on univariate and bivariate probability distributions of discrete random variables X and Y. A probability distribution is specified by its probability mass functions (pmf) stored either as a "probability vector" for a univariate distribution or a "probability matrix" for a bivariate distribution. joint probability matrix: pxy(i, j) = P(X = x_i, Y = y_j) marginal probability vector: px(i) = P(X = x_i) conditional probability matrix: px_y(i, j) = P(X = x_i|Y = y_j) In addition to computing joint, marginal and conditional probabilities, methods for computing entropy and mutual information are also provided. Entropy provides a measure of disorder or randomness. If there is little randomness, entropy will close to 0, while when randomness is high, entropy will be close to, e.g., log2 (px.dim). Mutual information provides a robust measure of dependency between random variables (contrast with correlation).
The Probability object provides methods for operating on univariate and bivariate probability distributions of discrete random variables X and Y. A probability distribution is specified by its probability mass functions (pmf) stored either as a "probability vector" for a univariate distribution or a "probability matrix" for a bivariate distribution. joint probability matrix: pxy(i, j) = P(X = x_i, Y = y_j) marginal probability vector: px(i) = P(X = x_i) conditional probability matrix: px_y(i, j) = P(X = x_i|Y = y_j) In addition to computing joint, marginal and conditional probabilities, methods for computing entropy and mutual information are also provided. Entropy provides a measure of disorder or randomness. If there is little randomness, entropy will close to 0, while when randomness is high, entropy will be close to, e.g., log2 (px.dim). Mutual information provides a robust measure of dependency between random variables (contrast with correlation).
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
Probability.type
The RTensor4D class is an implementation for 3-dimensional ragged tensors. The tensor may only be ragged in the middle dimension (dim2) and whose sizes may only be dependent of the first index, e.g., i in (i, j, k). The names of the dimensions corresponds to MATLAB (row, column, sheet).
The RTensor4D class is an implementation for 3-dimensional ragged tensors. The tensor may only be ragged in the middle dimension (dim2) and whose sizes may only be dependent of the first index, e.g., i in (i, j, k). The names of the dimensions corresponds to MATLAB (row, column, sheet).
Value parameters
- dim
-
size of the 1st level/dimension (row) of the tensor (height)
- dim2
-
variable size of the 2nd level/dimension (column) of the tensor (width)
- dim3
-
variable size of the 3rd level/dimension (sheet) of the tensor (depth)
- dim4
-
size of the 4th level/dimension (channel) of the tensor (spectra)
- v
-
the 4D array for holding the tensor elements
Attributes
- Companion
- object
- Supertypes
-
trait Serializableclass Objecttrait Matchableclass Any
The RTensorD class is an implementation for 3-dimensional ragged tensors. The tensor may only be ragged in the middle dimension (dim2) and whose sizes may only be dependent of the first index, e.g., i in (i, j, k). The names of the dimensions corresponds to MATLAB (row, column, sheet).
The RTensorD class is an implementation for 3-dimensional ragged tensors. The tensor may only be ragged in the middle dimension (dim2) and whose sizes may only be dependent of the first index, e.g., i in (i, j, k). The names of the dimensions corresponds to MATLAB (row, column, sheet).
Value parameters
- dim
-
size of the 1st level/dimension (row) of the tensor (height)
- dim2
-
variable size of the 2nd level/dimension (column) of the tensor (width)
- dim3
-
size of the 3rd level/dimension (sheet) of the tensor (depth)
- v
-
the 3D array for holding the tensor elements
Attributes
- Companion
- object
- Supertypes
-
trait Serializableclass Objecttrait Matchableclass Any
The StatTable class display statistical results in a frame's table.
The StatTable class display statistical results in a frame's table.
Value parameters
- _title
-
the title of the frame
- stats
-
the statistics to be displayed in the table.
Attributes
- Supertypes
-
class Frameclass JFrametrait RootPaneContainertrait WindowConstantsclass Frameclass Windowtrait Accessibleclass Containerclass Componenttrait Serializabletrait MenuContainertrait ImageObserverclass Objecttrait Matchableclass AnyShow all
The Statistic class is used to collect values and compute sample statistics on them (e.g., waiting time). Contrast with TimeStatistic defined in TimeStatistic.scala.
The Statistic class is used to collect values and compute sample statistics on them (e.g., waiting time). Contrast with TimeStatistic defined in TimeStatistic.scala.
Value parameters
- name
-
the name for this statistic (e.g., 'waitingTime')
- unbiased
-
whether the estimators are restricted to be unbiased
Attributes
- Companion
- object
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
-
class TimeStatistic
The Stats case class is used to hold basic statistical information: mean, variance, auto-covariance, and auto-correlation. Note gamma0 (biased) does not equal the sample variance (unbiased)
The Stats case class is used to hold basic statistical information: mean, variance, auto-covariance, and auto-correlation. Note gamma0 (biased) does not equal the sample variance (unbiased)
Value parameters
- adjusted
-
whether to adjust to account for the number of elements in the sum Σ (or use dim-1)
- lags_
-
the maximum number of lags
- y
-
the response vector (time-series data) for the training/full dataset
Attributes
- See also
-
VectorD.acov - Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The SymmetricQRstep object performs a symmetric QR step with a Wilkinson shift.
The SymmetricQRstep object performs a symmetric QR step with a Wilkinson shift.
Attributes
- See also
-
Algorithm 8.3.2 in Matrix Computations.
http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter3.pdf (Algorithm 3.6)
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
SymmetricQRstep.type
The TensorD class is a simple implementation for 3-dimensional tensors. The names of the dimensions corresponds to MATLAB (row, column, sheet).
The TensorD class is a simple implementation for 3-dimensional tensors. The names of the dimensions corresponds to MATLAB (row, column, sheet).
Value parameters
- dim
-
size of the 1st level/dimension (row) of the tensor (height)
- dim2
-
size of the 2nd level/dimension (column) of the tensor (width)
- dim3
-
size of the 3rd level/dimension (sheet) of the tensor (depth)
- v
-
the 3D array for holding the tensor elements
Attributes
- See also
-
www.kolda.net/publication/TensorReview.pdf for details on layout
RTensorDfor non-rectangular (ragged) tensors. - Companion
- object
- Supertypes
-
trait Serializableclass Objecttrait Matchableclass Any
The TimeStatistic class is used to collect values and compute time-persistent statistics on them (e.g., Number in Queue).
The TimeStatistic class is used to collect values and compute time-persistent statistics on them (e.g., Number in Queue).
Value parameters
- _lastTime
-
the time of last observation
- _startTime
-
the time observation began
- name
-
the name for this statistic (e.g., 'numberInQueue' or 'tellerQ')
Attributes
- See also
-
staff.unak.is/andy/Year%203%20Simulation/Laboratories/v4manual/internal.htm
- Companion
- object
- Supertypes
The TimeStatistic companion object provides additional functions.
The TimeStatistic companion object provides additional functions.
Attributes
- Companion
- class
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
TimeStatistic.type
The TnT_Split object provides methods for splitting datasets into testing-sets and training-sets.
The TnT_Split object provides methods for splitting datasets into testing-sets and training-sets.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
TnT_Split.type
The Transform trait supports the use of transformation functions, such that it is easy to take the inverse transform. When a transformation uses arguments, they are remembered for use by the inverse transformation.
The Transform trait supports the use of transformation functions, such that it is easy to take the inverse transform. When a transformation uses arguments, they are remembered for use by the inverse transformation.
Value parameters
- x
-
the vector or matrix being transformed
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Known subtypes
The VMatrixD class maintains virtual-matrices where the first dim2 columns are stored, while the last dim2v are virtual, i.e., calculated as needed. Virtual-matrices offer memory reduction for Quadratic, Cubic, and Symbolic Regression, where augmented columns can be calculated rather than stored.
The VMatrixD class maintains virtual-matrices where the first dim2 columns are stored, while the last dim2v are virtual, i.e., calculated as needed. Virtual-matrices offer memory reduction for Quadratic, Cubic, and Symbolic Regression, where augmented columns can be calculated rather than stored.
Value parameters
- dim2_
-
the stored second (column) dimension of the matrix
- dim2v
-
the virtual second (column) dimension of the matrix
- dim_
-
the first (row) dimension of the matrix
- formulas
-
the formulas used to calculate the last dim2v columns Array (1, 1) => x1 * x1; Array (1, 2) => x1 * x2
- v_
-
the 2D array used to store matrix the first dim2_ columns
Attributes
- See also
-
scalation.modeling.SymbolicRegression
- Companion
- object
- Supertypes
The VectorC class stores and operates on Numeric Vectors of base type Complex.
The VectorC class stores and operates on Numeric Vectors of base type Complex.
Value parameters
- dim
-
the dimension/size of the vector
- v
-
the 1D array used to store vector elements
Attributes
- Companion
- object
- Supertypes
-
trait DefaultSerializabletrait Serializabletrait PartiallyOrdered[VectorC]trait IndexedSeq[Complex]trait IndexedSeq[Complex]trait Seq[Complex]trait Cloneabletrait Seq[Complex]trait Equalstrait Iterable[Complex]trait Iterable[Complex]trait IterableOnce[Complex]class Objecttrait Matchableclass AnyShow all
The VectorD class stores and operates on Numeric Vectors of base type Double.
The VectorD class stores and operates on Numeric Vectors of base type Double.
Value parameters
- dim
-
the dimension/size of the vector
- v
-
the 1D array used to store vector elements
Attributes
- Companion
- object
- Supertypes
-
trait DefaultSerializabletrait Serializabletrait PartiallyOrdered[VectorD]trait IndexedSeq[Double]trait IndexedSeqOps[Double, IndexedSeq, IndexedSeq[Double]]trait IndexedSeq[Double]trait IndexedSeqOps[Double, IndexedSeq, IndexedSeq[Double]]trait Seq[Double]trait SeqOps[Double, IndexedSeq, IndexedSeq[Double]]trait Cloneable[IndexedSeq[Double]]trait Cloneabletrait Seq[Double]trait Equalstrait SeqOps[Double, IndexedSeq, IndexedSeq[Double]]trait PartialFunction[Int, Double]trait Int => Doubletrait Iterable[Double]trait Iterable[Double]trait IterableFactoryDefaults[Double, IndexedSeq]trait IterableOps[Double, IndexedSeq, IndexedSeq[Double]]trait IterableOnceOps[Double, IndexedSeq, IndexedSeq[Double]]trait IterableOnce[Double]class Objecttrait Matchableclass AnyShow all
The VectorDOps object provides extension methods to support scalar op vector operations, so that one can write 2.0 + x as well as x + 2.0.
The VectorDOps object provides extension methods to support scalar op vector operations, so that one can write 2.0 + x as well as x + 2.0.
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
VectorDOps.type
The VectorI class stores and operates on Numeric Vectors of base type Int.
The VectorI class stores and operates on Numeric Vectors of base type Int.
Value parameters
- dim
-
the dimension/size of the vector
- v
-
the 1D array used to store vector elements
Attributes
- Companion
- object
- Supertypes
-
trait DefaultSerializabletrait Serializabletrait PartiallyOrdered[VectorI]trait IndexedSeq[Int]trait IndexedSeqOps[Int, IndexedSeq, IndexedSeq[Int]]trait IndexedSeq[Int]trait IndexedSeqOps[Int, IndexedSeq, IndexedSeq[Int]]trait Seq[Int]trait SeqOps[Int, IndexedSeq, IndexedSeq[Int]]trait Cloneable[IndexedSeq[Int]]trait Cloneabletrait Seq[Int]trait Equalstrait SeqOps[Int, IndexedSeq, IndexedSeq[Int]]trait PartialFunction[Int, Int]trait Int => Inttrait Iterable[Int]trait Iterable[Int]trait IterableFactoryDefaults[Int, IndexedSeq]trait IterableOps[Int, IndexedSeq, IndexedSeq[Int]]trait IterableOnceOps[Int, IndexedSeq, IndexedSeq[Int]]trait IterableOnce[Int]class Objecttrait Matchableclass AnyShow all
The VectorL class stores and operates on Numeric Vectors of base type Long.
The VectorL class stores and operates on Numeric Vectors of base type Long.
Value parameters
- dim
-
the dimension/size of the vector
- v
-
the 1D array used to store vector elements
Attributes
- Companion
- object
- Supertypes
-
trait DefaultSerializabletrait Serializabletrait PartiallyOrdered[VectorL]trait IndexedSeq[Long]trait IndexedSeqOps[Long, IndexedSeq, IndexedSeq[Long]]trait IndexedSeq[Long]trait IndexedSeqOps[Long, IndexedSeq, IndexedSeq[Long]]trait Seq[Long]trait SeqOps[Long, IndexedSeq, IndexedSeq[Long]]trait Cloneable[IndexedSeq[Long]]trait Cloneabletrait Seq[Long]trait Equalstrait SeqOps[Long, IndexedSeq, IndexedSeq[Long]]trait PartialFunction[Int, Long]trait Int => Longtrait Iterable[Long]trait Iterable[Long]trait IterableFactoryDefaults[Long, IndexedSeq]trait IterableOps[Long, IndexedSeq, IndexedSeq[Long]]trait IterableOnceOps[Long, IndexedSeq, IndexedSeq[Long]]trait IterableOnce[Long]class Objecttrait Matchableclass AnyShow all
The VectorS class stores and operates on Numeric Vectors of base type String.
The VectorS class stores and operates on Numeric Vectors of base type String.
Value parameters
- dim
-
the dimension/size of the vector
- v
-
the 1D array used to store vector elements
Attributes
- Companion
- object
- Supertypes
-
trait DefaultSerializabletrait Serializabletrait PartiallyOrdered[VectorS]trait IndexedSeq[String]trait IndexedSeqOps[String, IndexedSeq, IndexedSeq[String]]trait IndexedSeq[String]trait IndexedSeqOps[String, IndexedSeq, IndexedSeq[String]]trait Seq[String]trait SeqOps[String, IndexedSeq, IndexedSeq[String]]trait Cloneable[IndexedSeq[String]]trait Cloneabletrait Seq[String]trait Equalstrait SeqOps[String, IndexedSeq, IndexedSeq[String]]trait PartialFunction[Int, String]trait Int => Stringtrait Iterable[String]trait Iterable[String]trait IterableFactoryDefaults[String, IndexedSeq]trait IterableOps[String, IndexedSeq, IndexedSeq[String]]trait IterableOnceOps[String, IndexedSeq, IndexedSeq[String]]trait IterableOnce[String]class Objecttrait Matchableclass AnyShow all
The VectorT class stores and operates on Numeric Vectors of base type TimeNum.
The VectorT class stores and operates on Numeric Vectors of base type TimeNum.
Value parameters
- dim
-
the dimension/size of the vector
- v
-
the 1D array used to store vector elements
Attributes
- Companion
- object
- Supertypes
-
trait DefaultSerializabletrait Serializabletrait PartiallyOrdered[VectorT]trait IndexedSeq[TimeNum]trait IndexedSeq[TimeNum]trait Seq[TimeNum]trait Cloneabletrait Seq[TimeNum]trait Equalstrait Iterable[TimeNum]trait Iterable[TimeNum]trait IterableOnce[TimeNum]class Objecttrait Matchableclass AnyShow all
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The cosForm class applies the cosine-transformation.
The cosForm class applies the cosine-transformation.
Attributes
- Supertypes
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The powForm class applies the power-transformation x^p for power p > 1.
The powForm class applies the power-transformation x^p for power p > 1.
Attributes
- Supertypes
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The rangeForm class transforms values to the default range/bounds lu.
The rangeForm class transforms values to the default range/bounds lu.
Attributes
- Supertypes
The sinForm class applies the sine-transformation.
The sinForm class applies the sine-transformation.
Attributes
- Supertypes
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
Attributes
- Supertypes
-
class Objecttrait Matchableclass Any
The zForm class applies the z-transformation (subtract mean and divide by standard deviation).
The zForm class applies the z-transformation (subtract mean and divide by standard deviation).
Attributes
- Supertypes
Types
Factor type contains 'u, s, v' which are the left orthogonal matrix, the diagonal matrix/vector containing singular values and the right orthogonal matrix.
Factor type contains 'u, s, v' which are the left orthogonal matrix, the diagonal matrix/vector containing singular values and the right orthogonal matrix.
Attributes
Top-level type definition for functions mapping:
Top-level type definition for functions mapping:
Attributes
Top-level type definition for functions mapping:
Top-level type definition for functions mapping:
Attributes
Value members
Concrete methods
The bidiagonalTest main function is used to test the Bidiagonal class. bidiagonalization answer = [ (21.8, -.613), (12.8, 2.24, 0.) ]
The bidiagonalTest main function is used to test the Bidiagonal class. bidiagonalization answer = [ (21.8, -.613), (12.8, 2.24, 0.) ]
Attributes
- See also
-
books.google.com/books?isbn=0801854148 (p. 252)
runMain scalation.mathstat.bidiagonalTest
The combinatoricsTest main function tests the methods in the Combinatorics object.
The combinatoricsTest main function tests the methods in the Combinatorics object.
runMain scalation.mathstat.combinatoricsTest
Attributes
The combinatoricsTest2 main function tests the Gamma and Factorial functions in the Combinatorics object.
The combinatoricsTest2 main function tests the Gamma and Factorial functions in the Combinatorics object.
runMain scalation.mathstat.combinatoricsTest2
Attributes
Return the complement of index positions idx, e.g., comple (Array (1, 3), 5) = Array (0, 2, 4). param idx the index positions to be complemented param dim the exclusive upper bound
Return the complement of index positions idx, e.g., comple (Array (1, 3), 5) = Array (0, 2, 4). param idx the index positions to be complemented param dim the exclusive upper bound
Attributes
The complexTest main function is used to test the Complex class.
The complexTest main function is used to test the Complex class.
runMain scalation.mathstat.complexTest
Attributes
The correlogramTest main function tests the Correlogram trait on a simple dataset.
The correlogramTest main function tests the Correlogram trait on a simple dataset.
runMain scalation.mathstat.correlogramTest
Attributes
Diagnose matrix x looking for high correlation, high condition number, lower than expected rank, zero variance columns (there should only be one).
Diagnose matrix x looking for high correlation, high condition number, lower than expected rank, zero variance columns (there should only be one).
Value parameters
- x
-
the data matrix to diagnose
Attributes
Duplicate a fixed second.third dimension d into a vector with d repeated.
Duplicate a fixed second.third dimension d into a vector with d repeated.
Value parameters
- d
-
fixed size of the 2nd/3rd level/dimension (column/sheet) of the tensor
- dim
-
size of the 1st level/dimension (row) of the tensor (height)
Attributes
The EigenTest main function is used to test the all the classes used in computing Eigenvalues and Eigenvectors for the non-symmetric/general case.
The EigenTest main function is used to test the all the classes used in computing Eigenvalues and Eigenvectors for the non-symmetric/general case.
runMain scalation.mathstat.EigenTest
Attributes
The fac_CholeskyTest main function tests the Fac_Cholesky class. It compare the Cholesky and LU Factorization algorithms.
The fac_CholeskyTest main function tests the Fac_Cholesky class. It compare the Cholesky and LU Factorization algorithms.
Attributes
- See also
-
ece.uwaterloo.ca/~dwharder/NumericalAnalysis/04LinearAlgebra/cholesky
runMain scalation.mathstat.fac_CholeskyTest
The fac_CholeskyTest2 main function tests the Fac_Cholesky class. It compares the three Cholesky Factorization algorithms.
The fac_CholeskyTest2 main function tests the Fac_Cholesky class. It compares the three Cholesky Factorization algorithms.
runMain scalation.mathstat.fac_CholeskyTest2
Attributes
The fac_CholeskyTest3 main function tests the Fac_Cholesky class. It compares the three Cholesky Factorization algorithms on challenging problems.
The fac_CholeskyTest3 main function tests the Fac_Cholesky class. It compares the three Cholesky Factorization algorithms on challenging problems.
Attributes
- See also
-
apps.dtic.mil/sti/pdfs/ADA205174.pdf
www.applied-mathematics.net/identification/papersLARS/_cholesky_shnabell.pdf
runMain scalation.mathstat.fac_CholeskyTest3
The fac_InverseTest main function is used to test the Fac_Inverse class.
The fac_InverseTest main function is used to test the Fac_Inverse class.
runMain scalation.mathstat.fac_InverseTest
Attributes
The fac_LQTest main function is used to test the Fac_LQ class.
The fac_LQTest main function is used to test the Fac_LQ class.
runMain scalation.mathstat.fac_LQTest
Attributes
The fac_LUTest main function is used to test the Fac_LU class. Test a Square Matrix.
The fac_LUTest main function is used to test the Fac_LU class. Test a Square Matrix.
runMain scalation.mathstat.fac_LUTest
Attributes
The fac_LUTest2 main function is used to test the Fac_LU class. Test a Rectangular Matrix.
The fac_LUTest2 main function is used to test the Fac_LU class. Test a Rectangular Matrix.
runMain scalation.mathstat.fac_LUTest2
Attributes
The fac_LUTest3 main function is used to test the Fac_LU class.
The fac_LUTest3 main function is used to test the Fac_LU class.
runMain scalation.mathstat.fac_LUTest3
Attributes
The fac_QRTest main function is used to test the Fac_QR classes.
The fac_QRTest main function is used to test the Fac_QR classes.
Attributes
- See also
-
www.math.usm.edu/lambers/mat610/sum10/lecture9.pdf FIX: the nullspaceV function needs to be fixed.
runMain scalation.mathstat.fac_QRTest
The fac_QRTest2 main function is used to test the correctness of the solve method in the Fac_QR class as it would be used in Regression.
The fac_QRTest2 main function is used to test the correctness of the solve method in the Fac_QR class as it would be used in Regression.
runMain scalation.mathstat.fac_QRTest2
Attributes
The fac_QR_RRTest main function is used to test the Fac_QR_RR classes.
The fac_QR_RRTest main function is used to test the Fac_QR_RR classes.
Attributes
- See also
-
www.math.usm.edu/lambers/mat610/sum10/lecture9.pdf
runMain scalation.mathstat.fac_QR_RRTest
The fac_SVDTest main function is used to test the Fac_SVD class.
The fac_SVDTest main function is used to test the Fac_SVD class.
Attributes
- See also
-
www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf
runMain scalation.mathstat.fac_SVDTest
The fac_SVDTest2 main function is used to test the Fac_SVD class.
The fac_SVDTest2 main function is used to test the Fac_SVD class.
runMain scalation.mathstat.fac_SVDTest2
Attributes
The fac_SVDTest3 main function is used to test the Fac_SVD class.
The fac_SVDTest3 main function is used to test the Fac_SVD class.
runMain scalation.mathstat.fac_SVDTest3
Attributes
The fac_SVDTest4 main function is used to test the Fac_SVD class. Test case a8 currently fails as ScalaTion does not consider 9.18964e-09 to be approximately zero.
The fac_SVDTest4 main function is used to test the Fac_SVD class. Test case a8 currently fails as ScalaTion does not consider 9.18964e-09 to be approximately zero.
runMain scalation.mathstat.fac_SVDTest4
Attributes
Sample a function at n+1 equally spaced points in the domain and return their functional values in a vector. Ex: sample f(x) on x in [0, 10] at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Sample a function at n+1 equally spaced points in the domain and return their functional values in a vector. Ex: sample f(x) on x in [0, 10] at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Value parameters
- ab
-
the interval of the domain [a, b]
- f
-
the function to be sampled
- n
-
the number of points to be evaluated
Attributes
The histogramTest main function is used to test the Histogram class. As 'k' increases, the sum of Uniform approaches Normal.
The histogramTest main function is used to test the Histogram class. As 'k' increases, the sum of Uniform approaches Normal.
runMain scalation.mathstat.histogramTest
Attributes
The HouseholderTest main function is used to test Householder object.
The HouseholderTest main function is used to test Householder object.
Attributes
- See also
-
www.math.siu.edu/matlab/tutorial4.pdf
runMain scalation.mathstat.householderTest
The inverseTest main function checks the correctness of inverse matrices produced by several matrix factorization algorithms.
The inverseTest main function checks the correctness of inverse matrices produced by several matrix factorization algorithms.
runMain scalation.mathstat.inverseTest
Attributes
Matricize a vector function (V2V) by applying it to each row of a matrix. MatrixD (for i <- x.indices yield f(x(i)))
Matricize a vector function (V2V) by applying it to each row of a matrix. MatrixD (for i <- x.indices yield f(x(i)))
Value parameters
- f
-
the vector function to matricize
- x
-
the matrix to apply the function to
Attributes
The matrixCalc0 main function is used to test the MatrixCalc class. It performs the RW and AR(1) time series model calculations.
The matrixCalc0 main function is used to test the MatrixCalc class. It performs the RW and AR(1) time series model calculations.
runMain scalation.mathstat.matrixCalc0
Attributes
The matrixCalc2 main function read a matrix from a CSV file and perform calculations, e.g. grade calculations.
The matrixCalc2 main function read a matrix from a CSV file and perform calculations, e.g. grade calculations.
runMain scalation.mathstat.matrixCalc2
Attributes
The matrixCals3 main function allows for Custom calculations.
The matrixCals3 main function allows for Custom calculations.
runMain scalation.mathstat.matrixCalc3
Attributes
The matrixCals4 main function allows for Custom calculations.
The matrixCals4 main function allows for Custom calculations.
runMain scalation.mathstat.matrixCalc4
Attributes
The matrixD2Test main function tests the MatrixD2 class. Compares the performance of matrix addition implementations
The matrixD2Test main function tests the MatrixD2 class. Compares the performance of matrix addition implementations
runMain scalation.mathstat.matrixD2Test
Attributes
The matrixD2Test2 main function tests the MatrixD2 class. Compares the performance of matrix multiplication implementations.
The matrixD2Test2 main function tests the MatrixD2 class. Compares the performance of matrix multiplication implementations.
runMain scalation.mathstat.matrixD2Test2
Attributes
The matrixDTest main function tests the MatrixD class. Compares the performance of matrix addition implementations
The matrixDTest main function tests the MatrixD class. Compares the performance of matrix addition implementations
runMain scalation.mathstat.matrixDTest
Attributes
The matrixDTest2 main function tests the MatrixD class. Compares the performance of matrix multiplication implementations.
The matrixDTest2 main function tests the MatrixD class. Compares the performance of matrix multiplication implementations.
runMain scalation.mathstat.matrixDTest2
Attributes
The matrixDTest3 main function tests the MatrixD class. Test the back substitution (/~) operator for solving for x in u * x = y. It also computes an outer product
The matrixDTest3 main function tests the MatrixD class. Test the back substitution (/~) operator for solving for x in u * x = y. It also computes an outer product
runMain scalation.mathstat.matrixDTest3
Attributes
The matrixDTest4 main function tests the MatrixD class. Test the split methods: split and split_ as well as shiftDiag and unshiftDiag
The matrixDTest4 main function tests the MatrixD class. Test the split methods: split and split_ as well as shiftDiag and unshiftDiag
runMain scalation.mathstat.matrixDTest4
Attributes
The matrixDTest5 main function tests the MatrixD class. Test the covariance and correlation.
The matrixDTest5 main function tests the MatrixD class. Test the covariance and correlation.
runMain scalation.mathstat.matrixDTest5
Attributes
The matrixDTest6 main function tests the MatrixD class. Test the insert method.
The matrixDTest6 main function tests the MatrixD class. Test the insert method.
runMain scalation.mathstat.matrixDTest6
Attributes
The matrixDTest7 main function tests the MatrixD class. Test the convolution operators.
The matrixDTest7 main function tests the MatrixD class. Test the convolution operators.
runMain scalation.mathstat.matrixDTest7
Attributes
Matrixize a vector function (V2V) to create a matrix function (M2M).
Matrixize a vector function (V2V) to create a matrix function (M2M).
Value parameters
- f
-
the vector function to matrixize
Attributes
The plotCTest main function is used to test the PlotC class.
The plotCTest main function is used to test the PlotC class.
Attributes
- See also
-
scalation.scala2d.writeImage
runMain scalation.mathstat.plotCTest
The plotMTest main functionb is used to test the PlotM class.
The plotMTest main functionb is used to test the PlotM class.
runMain scalation.mathstat.plotMTest
Attributes
The plotMTest2 main function is used to test the PlotM class. This version also plots lines connecting the points. ^ @see scalation.scala2d.writeImage
The plotMTest2 main function is used to test the PlotM class. This version also plots lines connecting the points. ^ @see scalation.scala2d.writeImage
runMain scalation.mathstat.plotMTest2
Attributes
The plotTest main function is used to test the Plot class.
The plotTest main function is used to test the Plot class.
Attributes
- See also
-
scalation.scala2d.writeImage
runMain scalation.mathstat.plotTest
The probabilityTest main function is used to test the Probability object.
The probabilityTest main function is used to test the Probability object.
runMain scalation.mathstat.probabilityTest
Attributes
The probabilityTest2 main function provides upper bounds for entropy and nentropy and plots entropy.
The probabilityTest2 main function provides upper bounds for entropy and nentropy and plots entropy.
runMain scalation.mathstat.probabilityTest2
Attributes
The probabilityTest3 main function is used to test the Probability class. Plot probability and log-probability entropy and normalized entropy for binomial distributions.
The probabilityTest3 main function is used to test the Probability class. Plot probability and log-probability entropy and normalized entropy for binomial distributions.
runMain scalation.mathstat.probabilityTest3
Attributes
The probabilityTest4 main function is used to test the Probability class. It computes entropy, relative entropy and cross entropy and verifies that cross entropy == entropy + relative entropy
The probabilityTest4 main function is used to test the Probability class. It computes entropy, relative entropy and cross entropy and verifies that cross entropy == entropy + relative entropy
Attributes
- See also
-
arxiv.org/pdf/0808.4111.pdf
runMain scalation.mathstat.probabilityTest4
The probabilityTest5 main function is used to test the Probability class. It computes joint, marginal and conditional probabilities as well as measures of independence.
The probabilityTest5 main function is used to test the Probability class. It computes joint, marginal and conditional probabilities as well as measures of independence.
Attributes
- See also
-
ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and -statistics-spring-2014/readings/MIT18_05S14_Reading7a.pdf
runMain scalation.mathstat.probabilityTest5
The probabilityTest6 main function is used to test the Probability class. It computes joint, marginal and conditional probabilities.
The probabilityTest6 main function is used to test the Probability class. It computes joint, marginal and conditional probabilities.
runMain scalation.mathstat.probabilityTest6
Attributes
The rTensor4DTest main function is used to test the RTensor4D class.
The rTensor4DTest main function is used to test the RTensor4D class.
runMain scalation.mathstat.rTensor4DTest
Attributes
The rTensorDTest main function is used to test the RTensorD class.
The rTensorDTest main function is used to test the RTensorD class.
runMain scalation.mathstat.rTensorDTest
Attributes
Return the sizes of all the second level arrays in u.
Return the sizes of all the second level arrays in u.
Value parameters
- u
-
the 3D array
Attributes
Return the sizes of all the third level arrays in u.
Return the sizes of all the third level arrays in u.
Value parameters
- u
-
the 4D array
Attributes
Return the sizes of all the third level arrays in u.
Return the sizes of all the third level arrays in u.
Value parameters
- u
-
the 4D array
Attributes
The statTableTest main function is used to test the StatTable class.
The statTableTest main function is used to test the StatTable class.
runMain scalation.mathstat.statTableTest
Attributes
The statisticTest main function is used to test the Statistic class.
The statisticTest main function is used to test the Statistic class.
runMain scalation.mathstat.statisticTest
Attributes
The stats4TSTest main function tests the Stats4TS class on two simple datasets.
The stats4TSTest main function tests the Stats4TS class on two simple datasets.
runMain scalation.mathstat.stats4TSTest
Attributes
Compute the confidence interval half-width (ihw) for the given confidence level using the t-distribution.
Compute the confidence interval half-width (ihw) for the given confidence level using the t-distribution.
Value parameters
- n
-
the length of the vector/sample
- p
-
the confidence level
- sig
-
the standard deviation of the vector/sample
Attributes
Test (2-tail) to see if two means (one given and one estimated) are significantly different, using the t-distribution.
Test (2-tail) to see if two means (one given and one estimated) are significantly different, using the t-distribution.
Value parameters
- mu
-
the estimated mean of the vector/sample
- mu0
-
the given mean
- n
-
the length of the vector/sample
- p
-
the significance/confidence level
- show
-
whether to show details of the test
- sig
-
the standard deviation of the vector/sample
Attributes
Compute the product of the critical value from the t-distribution and the standard deviation of the vector.
Compute the product of the critical value from the t-distribution and the standard deviation of the vector.
Value parameters
- df
-
the degrees of freedom
- p
-
the confidence level
- sig
-
the standard deviation of the vector/sample
Attributes
The tensorDTest main function is used to test the TensorD class.
The tensorDTest main function is used to test the TensorD class.
runMain scalation.mathstat.tensorDTest
Attributes
The TensorDTest2 main function is used to test the TensorD class. It tests pulling matrices and vectors from the tensor.
The TensorDTest2 main function is used to test the TensorD class. It tests pulling matrices and vectors from the tensor.
runMain scalation.mathstat.tensorDTest2
Attributes
The TensorDTest3 main function is used to test the TensorD class. It tests the use of tensors and matrices for convolutional operation needed in Convolutional Nets.
The TensorDTest3 main function is used to test the TensorD class. It tests the use of tensors and matrices for convolutional operation needed in Convolutional Nets.
runMain scalation.mathstat.tensorDTest3
Attributes
Tensorize a vector function (V2V) by applying it to each (row, column) of a tensor.
Tensorize a vector function (V2V) by applying it to each (row, column) of a tensor.
Value parameters
- f
-
the vector function to tensorize
- x
-
the tensor to apply the function to
Attributes
The timeStatisticTest main function is used to test the TimeStatistic class.
The timeStatisticTest main function is used to test the TimeStatistic class.
runMain scalation.mathstat.timeStatisticTest
Attributes
The tnT_SplitTest main function tests the TnT_Split object using the Texas Temperatures dataset. It is split into a testing-set and a training-set.
The tnT_SplitTest main function tests the TnT_Split object using the Texas Temperatures dataset. It is split into a testing-set and a training-set.
runMain scalation.mathstat.tnT_SplitTest
Attributes
The transformTest tests the Transform class at the vector level.
The transformTest tests the Transform class at the vector level.
runMain scalation.mathstat.transformTest
Attributes
The transformTest2 tests the Transform class at the matrix level.
The transformTest2 tests the Transform class at the matrix level.
runMain scalation.mathstat.transformTest2
Attributes
The transformTest3 tests the Transform class at the matrix level.
The transformTest3 tests the Transform class at the matrix level.
runMain scalation.mathstat.transformTest3
Attributes
The vMatrixDTest main function is used to test the VMatrixD class. It tests the calculation of X^T X, X^T y, and Cholesky Factorization for Regression and Quadratic (no-cross) Regression for the Texas Temperatures dataset.
The vMatrixDTest main function is used to test the VMatrixD class. It tests the calculation of X^T X, X^T y, and Cholesky Factorization for Regression and Quadratic (no-cross) Regression for the Texas Temperatures dataset.
Attributes
- See also
-
scalation.modeling.regressionTest7
runMain scalation.mathstat.vMatrixDTest
The vectorCTest main function tests the operations provided by the VectorC class. Only the most commonly used inherited operations are shown.
The vectorCTest main function tests the operations provided by the VectorC class. Only the most commonly used inherited operations are shown.
Attributes
- See also
-
mutable.IndexedSeq for a complete list
runMain scalation.mathstat.vectorCTest
The vectorCTest2 main function tests the indirect sorting operations provided by the VectorC class.
The vectorCTest2 main function tests the indirect sorting operations provided by the VectorC class.
runMain scalation.mathstat.vectorCTest2
Attributes
The vectorCTest3 main function tests auto-covariance and auto-correlation methods provided by the VectorC class.
The vectorCTest3 main function tests auto-covariance and auto-correlation methods provided by the VectorC class.
runMain scalation.mathstat.vectorCTest3
Attributes
The vectorDTest main function tests the operations provided by the VectorD class. Only the most commonly used inherited operations are shown.
The vectorDTest main function tests the operations provided by the VectorD class. Only the most commonly used inherited operations are shown.
Attributes
- See also
-
mutable.IndexedSeq for a complete list
runMain scalation.mathstat.vectorDTest
The vectorDTest2 main function tests the indirect sorting operations provided by the VectorD class.
The vectorDTest2 main function tests the indirect sorting operations provided by the VectorD class.
runMain scalation.mathstat.vectorDTest2
Attributes
The vectorDTest3 main function tests covariance and correlation methods provided by the VectorD class. Okay to use MatrixD in VectorD test code only.
The vectorDTest3 main function tests covariance and correlation methods provided by the VectorD class. Okay to use MatrixD in VectorD test code only.
runMain scalation.mathstat.vectorDTest3
Attributes
The vectorDTest4 main function tests auto-covariance and auto-correlation methods provided by the VectorD class.
The vectorDTest4 main function tests auto-covariance and auto-correlation methods provided by the VectorD class.
runMain scalation.mathstat.vectorDTest4
Attributes
The vectorDTest5 main function tests convolution operators defined in the VectorD class: conv (*+), conv_, convs and convs_.
The vectorDTest5 main function tests convolution operators defined in the VectorD class: conv (*+), conv_, convs and convs_.
Attributes
- See also
-
https://gregorygundersen.com/blog/2017/02/24/cnns/
runMain scalation.mathstat.vectorDTest5
The vectorDTest6 test the dot product implementations. Run this code for performance results. Note, due to JIT, reordering the code may change the relative performance. Generally, case 0 "x dot x (VectorD dot VectorD)" is the fastest.
The vectorDTest6 test the dot product implementations. Run this code for performance results. Note, due to JIT, reordering the code may change the relative performance. Generally, case 0 "x dot x (VectorD dot VectorD)" is the fastest.
Attributes
- See also
-
Timer.scala
runMain scalation.mathstat.vectorDTest6
The vectorITest main function tests the operations provided by the VectorI class. Only the most commonly used inherited operations are shown.
The vectorITest main function tests the operations provided by the VectorI class. Only the most commonly used inherited operations are shown.
Attributes
- See also
-
mutable.IndexedSeq for a complete list
runMain scalation.mathstat.vectorITest
The vectorLTest main function tests the operations provided by the VectorL class. Only the most commonly used inherited operations are shown.
The vectorLTest main function tests the operations provided by the VectorL class. Only the most commonly used inherited operations are shown.
Attributes
- See also
-
mutable.IndexedSeq for a complete list
runMain scalation.mathstat.vectorLTest
The vectorSTest main function tests the operations provided by the VectorS class. Only the most commonly used inherited operations are shown.
The vectorSTest main function tests the operations provided by the VectorS class. Only the most commonly used inherited operations are shown.
Attributes
- See also
-
mutable.IndexedSeq for a complete list
runMain scalation.mathstat.vectorSTest
The vectorSTest2 main function tests the operations provided by the VectorS class. It tests the map2Int method (String vector to Int vector).
The vectorSTest2 main function tests the operations provided by the VectorS class. It tests the map2Int method (String vector to Int vector).
runMain scalation.mathstat.vectorSTest2
Attributes
The vectorTTest main function tests the operations provided by the VectorT class. Only the most commonly used inherited operations are shown.
The vectorTTest main function tests the operations provided by the VectorT class. Only the most commonly used inherited operations are shown.
Attributes
- See also
-
mutable.IndexedSeq for a complete list
runMain scalation.mathstat.vectorTTest
The vectorTTest2 main function tests the operations provided by the VectorT class. It tests the map2Long method (TimeNum vector to Long vector).
The vectorTTest2 main function tests the operations provided by the VectorT class. It tests the map2Long method (TimeNum vector to Long vector).
runMain scalation.mathstat.vectorTTest2
Attributes
Vectorize a scalar function (S2S) to create a vector function (V2V).
Vectorize a scalar function (S2S) to create a vector function (V2V).
Value parameters
- f
-
the scalar function to vectorize
Attributes
Compute the confidence interval half-width (ihw) for the given confidence level using the z-distribution.
Compute the confidence interval half-width (ihw) for the given confidence level using the z-distribution.
Value parameters
- n
-
the length of the vector/sample
- p
-
the confidence level
- sig
-
the standard deviation of the vector/sample
Attributes
Test (2-tail) to see if two means (one given and one estimated) are significantly different, using the z-distribution.
Test (2-tail) to see if two means (one given and one estimated) are significantly different, using the z-distribution.
Value parameters
- mu
-
the estimated mean of the vector/sample
- mu0
-
the given mean
- n
-
the length of the vector/sample
- p
-
the significance/confidence level
- show
-
whether to show details of the test
- sig
-
the standard deviation of the vector/sample
Attributes
Compute the product of the critical value from the z-distribution (Standard Normal) and the standard deviation of the vector.
Compute the product of the critical value from the z-distribution (Standard Normal) and the standard deviation of the vector.
Value parameters
- p
-
the confidence level
- sig
-
the standard deviation of the vector/sample
Attributes
Concrete fields
Extensions
Extensions
Thee ⚬ extension method performs function composition f ⚬ g.
Thee ⚬ extension method performs function composition f ⚬ g.
Type parameters
- A
-
the type to which function
gcan be applied - B
-
the type to which function
fcan be applied - R
-
the return type for f ⚬ g
Attributes
- See also