ARY_Quad

scalation.modeling.forecasting.ARY_Quad
See theARY_Quad companion class
object ARY_Quad extends MakeMatrix4TSY

The ARY_Quad companion object provides factory methods for the ARY_Quad class.

Attributes

Companion
class
Graph
Supertypes
class Object
trait Matchable
class Any
Self type
ARY_Quad.type

Members list

Value members

Concrete methods

def apply(y: VectorD, hh: Int, fname_: Array[String], tRng: Range, hparam: HyperParameter, bakcast: Boolean): ARY_Quad

Create an ARY_Quad object by building an input matrix x and then calling the ARY_Quad constructor.

Create an ARY_Quad object by building an input matrix x and then calling the ARY_Quad constructor.

Value parameters

bakcast

whether a backcasted value is prepended to the time series (defaults to false)

fname_

the feature/variable names

hh

the maximum forecasting horizon (h = 1 to hh)

hparam

the hyper-parameters

tRng

the time range, if relevant (time index may suffice)

y

the response vector (time series data)

Attributes

def buildMatrix(y: VectorD, hp_: HyperParameter, bakcast: Boolean, tForm: (VectorD | MatrixD) => Transform): (MatrixD, TransformMap)

Build the input matrix by combining the p + spec columns for the trend and endogenous variable with the q * xe.dim2 columns for the exogenous variables.

Build the input matrix by combining the p + spec columns for the trend and endogenous variable with the q * xe.dim2 columns for the exogenous variables.

Value parameters

bakcast

whether a backcasted value is prepended to the time series (defaults to false)

hp_

the hyper-parameters

tForm

the z-transform (rescale to standard normal)

y

the response vector (time series data)

Attributes

def rescale(y: VectorD, hh: Int, fname_: Array[String], tRng: Range, hparam: HyperParameter, bakcast: Boolean, tForm: (VectorD | MatrixD) => Transform): ARY_Quad

Create an ARY_Quad object by building an input matrix xy and then calling the ARY_Quad constructor. Also rescale the input data.

Create an ARY_Quad object by building an input matrix xy and then calling the ARY_Quad constructor. Also rescale the input data.

Value parameters

bakcast

whether a backcasted value is prepended to the time series (defaults to false)

hh

the maximum forecasting horizon (h = 1 to hh)

hparam

the hyper-parameters

tForm

the z-transform (rescale to standard normal)

tRng

the time range, if relevant (time index may suffice)

y

the endogenous/response vector (main time series data)

Attributes