VectorC

scalation.mathstat.VectorC
See theVectorC companion object
class VectorC(val dim: Int, var v: Array[Complex]) extends IndexedSeq[Complex], PartiallyOrdered[VectorC], DefaultSerializable

The VectorC class stores and operates on Numeric Vectors of base type Complex.

Value parameters

dim

the dimension/size of the vector

v

the 1D array used to store vector elements

Attributes

Companion
object
Graph
Supertypes
trait DefaultSerializable
trait Serializable
trait PartiallyOrdered[VectorC]
trait IndexedSeq[Complex]
trait IndexedSeqOps[Complex, IndexedSeq, IndexedSeq[Complex]]
trait IndexedSeq[Complex]
trait IndexedSeqOps[Complex, IndexedSeq, IndexedSeq[Complex]]
trait Seq[Complex]
trait SeqOps[Complex, IndexedSeq, IndexedSeq[Complex]]
trait Cloneable[IndexedSeq[Complex]]
trait Cloneable
trait Seq[Complex]
trait Equals
trait SeqOps[Complex, IndexedSeq, IndexedSeq[Complex]]
trait PartialFunction[Int, Complex]
trait Int => Complex
trait Iterable[Complex]
trait Iterable[Complex]
trait IterableFactoryDefaults[Complex, IndexedSeq]
trait IterableOps[Complex, IndexedSeq, IndexedSeq[Complex]]
trait IterableOnceOps[Complex, IndexedSeq, IndexedSeq[Complex]]
trait IterableOnce[Complex]
class Object
trait Matchable
class Any
Show all

Members list

Type members

Inherited types

type AsPartiallyOrdered = Function1

Attributes

Inherited from:
PartiallyOrdered

Value members

Concrete methods

def *(y: IndexedSeq[Complex]): VectorC
def *(a: Complex): VectorC
def *=(y: IndexedSeq[Complex]): VectorC
def *=(a: Complex): VectorC
def +(y: IndexedSeq[Complex]): VectorC

Compute the element-wise sum (or difference, product, quotient) of vectors this and y.

Compute the element-wise sum (or difference, product, quotient) of vectors this and y.

Value parameters

y

the other vector/indexed sequence

Attributes

def +(a: Complex): VectorC

Compute the element-wise sum (or difference, product, quotient) of this and scalar a.

Compute the element-wise sum (or difference, product, quotient) of this and scalar a.

Value parameters

a

the scalar second operand

Attributes

def +(ia: (Int, Complex)): VectorC

Add this vector and scalar a only at position i, e.g., x + (3, 5.5).

Add this vector and scalar a only at position i, e.g., x + (3, 5.5).

Value parameters

ia

= (i, a) the (index position, scalar) to add

Attributes

def ++(y: IndexedSeq[Complex]): VectorC

Concatenate this vector and vector y.

Concatenate this vector and vector y.

Value parameters

y

the other vector/indexed sequence

Attributes

def +:(a: Complex): VectorC

Prepend (or append) this vector with scalar a.

Prepend (or append) this vector with scalar a.

Value parameters

a

the scalar second operand

Attributes

def +=(y: IndexedSeq[Complex]): VectorC

Compute the element-wise sum (or difference, product, quotient) of vectors this and y. Perform operations in-place (destructive) to reduce memory allocations.

Compute the element-wise sum (or difference, product, quotient) of vectors this and y. Perform operations in-place (destructive) to reduce memory allocations.

Value parameters

y

the other vector/indexed sequence

Attributes

def +=(a: Complex): VectorC

Compute the element-wise sum (or difference, product, quotient) of this and scalar a. Perform operations in-place (destructive) to reduce memory allocations.

Compute the element-wise sum (or difference, product, quotient) of this and scalar a. Perform operations in-place (destructive) to reduce memory allocations.

Value parameters

a

the scalar second operand

Attributes

def -(y: IndexedSeq[Complex]): VectorC
def -(a: Complex): VectorC
def -(ia: (Int, Complex)): VectorC

Subtract from this vector the scalar a only at position i, e.g., x - (3, 5.5).

Subtract from this vector the scalar a only at position i, e.g., x - (3, 5.5).

Value parameters

ia

= (i, a) the (index position, scalar) to subtract

Attributes

def -=(y: IndexedSeq[Complex]): VectorC
def -=(a: Complex): VectorC
def /(y: IndexedSeq[Complex]): VectorC
def /(a: Complex): VectorC
def /=(y: IndexedSeq[Complex]): VectorC
def /=(a: Complex): VectorC
def :+(a: Complex): VectorC
def =~(y: VectorC): Boolean

Determine whether this vector and vector y are nearly equal.

Determine whether this vector and vector y are nearly equal.

Value parameters

y

the other vector

Attributes

def abs: VectorC

Return the vector that is the element-wise absolute value of this vector.

Return the vector that is the element-wise absolute value of this vector.

Attributes

def acorr(k: Int): Complex

Compute the 'k'-lag auto-correlation of this vector (assumes a stationary process vector, if not its an approximation).

Compute the 'k'-lag auto-correlation of this vector (assumes a stationary process vector, if not its an approximation).

Value parameters

k

the lag parameter (0 <= k < n)

Attributes

def acorr_(k: Int): Complex

Compute the 'k'-lag auto-correlation of this vector for a non-stationary series.

Compute the 'k'-lag auto-correlation of this vector for a non-stationary series.

Value parameters

k

the lag parameter (0 <= k < n)

Attributes

def acov(k: Int): Complex

Compute the 'k'-lag auto-covariance of this vector for stationary series. This follows the standard defintion that divides by the number of elements dim to avoid singularity issues. IT ALWAYS DIVIDES BY 'dim-1'

Compute the 'k'-lag auto-covariance of this vector for stationary series. This follows the standard defintion that divides by the number of elements dim to avoid singularity issues. IT ALWAYS DIVIDES BY 'dim-1'

Value parameters

k

the lag parameter (0 <= k < n)

Attributes

See also

stats.stackexchange.com/questions/56238/question-about-sample-autocovariance-function

def acov(k: Int, mu: Complex): Complex

Compute the 'k'-lag auto-covariance of this vector for stationary series with the mean pre-computed.

Compute the 'k'-lag auto-covariance of this vector for stationary series with the mean pre-computed.

Value parameters

k

the lag parameter (0 <= k < n)

mu

the pre-computed mean

Attributes

def acov2(k: Int): Complex

Compute the 'k'-lag auto-covariance of this vector for stationary series. This follows an intuitive defintion that divides by the number of elements summed dim-k.

Compute the 'k'-lag auto-covariance of this vector for stationary series. This follows an intuitive defintion that divides by the number of elements summed dim-k.

Value parameters

k

the lag parameter (0 <= k < n)

Attributes

def acov_(k: Int): Complex

Compute the 'k'-lag auto-covariance of this vector for non-stationary series.

Compute the 'k'-lag auto-covariance of this vector for non-stationary series.

Value parameters

k

the lag parameter (0 <= k < n)

Attributes

def apply(i: Int): Complex

Return the i-th element of this vector.

Return the i-th element of this vector.

Value parameters

i

the index of the element to return

Attributes

def apply(r: Range): VectorC

Return the elements in range r of this vector, making sure not to go beyond the end of vector.

Return the elements in range r of this vector, making sure not to go beyond the end of vector.

Value parameters

r

the index range of elements to return

Attributes

def apply(idx: IndexedSeq[Int]): VectorC

Return the elements in index sequence idx of this vector.

Return the elements in index sequence idx of this vector.

Value parameters

idx

the index sequence of elements to return

Attributes

def apply(idx: IndexedSeq[Int]): VectorC
def apply(idx: Array[Int]): VectorC
def argmag(e: Int): Int

Find the argument maximum magnitude of this vector (index of most extreme element).

Find the argument maximum magnitude of this vector (index of most extreme element).

Value parameters

e

the ending index (exclusive) for the search

Attributes

def argmax(e: Int): Int

Find the argument maximum of this vector (index of maximum element).

Find the argument maximum of this vector (index of maximum element).

Value parameters

e

the ending index (exclusive) for the search

Attributes

def argmax(s: Int, e: Int): Int

Find the argument maximum of this vector (index of maximum element).

Find the argument maximum of this vector (index of maximum element).

Value parameters

e

the ending index (exclusive) for the search

s

the starting index (inclusive) for the search

Attributes

def argmin(e: Int): Int

Find the argument minimum of this vector (index of minimum element).

Find the argument minimum of this vector (index of minimum element).

Value parameters

e

the ending index (exclusive) for the search

Attributes

def argmin(s: Int, e: Int): Int

Find the argument minimum of 'this' vector (index of minimum element).

Find the argument minimum of 'this' vector (index of minimum element).

Value parameters

e

the ending index (exclusive) for the search

s

the starting index (inclusive) for the search

Attributes

def ccorr(y: VectorC, k: Int): Complex

Compute the 'k'-lag cross-correlation of this vector (assumes a stationary process vector, if not its an approximation).

Compute the 'k'-lag cross-correlation of this vector (assumes a stationary process vector, if not its an approximation).

Value parameters

k

the lag parameter (0 <= k < n)

y

the other vector

Attributes

def ccov(k: Int, mu: Complex, y: VectorC, mu_y: Complex): Complex

Compute the 'k'-lag cross-covariance of this vector and vector y for stationary series with both means pre-computed.

Compute the 'k'-lag cross-covariance of this vector and vector y for stationary series with both means pre-computed.

Value parameters

k

the lag parameter (0 <= k < n)

mu

the pre-computed mean for this

mu_y

the pre-computed mean for y

y

the other vector

Attributes

def chop(k: Int): Array[VectorC]

Chop this vector into k sub-vectors of equal sizes (perhaps except for the last one).

Chop this vector into k sub-vectors of equal sizes (perhaps except for the last one).

Value parameters

k

the number of pieces to chop this vector into

Attributes

Compute the centered norm-squared of this vector.

Compute the centered norm-squared of this vector.

Attributes

def copy: VectorC

Return a deep copy of this vector (note: clone may not be deep). Uses Java's native Arrays.copyOf for efficiency.

Return a deep copy of this vector (note: clone may not be deep). Uses Java's native Arrays.copyOf for efficiency.

Attributes

infix def corr(y: VectorC): Complex

Compute Pearson's correlation of this vector with vector y. If either variance is zero, will result in Not-a-Number (NaN), return one if the vectors are the same, or -0 (indicating undefined).

Compute Pearson's correlation of this vector with vector y. If either variance is zero, will result in Not-a-Number (NaN), return one if the vectors are the same, or -0 (indicating undefined).

Value parameters

y

the other vector

Attributes

def countDistinct: Int

Count the number of unique/distinct values in this vector.

Count the number of unique/distinct values in this vector.

Attributes

def countZero: Int

Count the number of zero elements in the this vector.

Count the number of zero elements in the this vector.

Attributes

infix def cov(y: VectorC): Complex

Compute the sample covariance (or population covariance) of this vector with vector y.

Compute the sample covariance (or population covariance) of this vector with vector y.

Value parameters

y

the other vector

Attributes

infix def cov_(y: VectorC): Complex

Cumulate the values of 'this' vector from left to right (e.g., create a CDF from a pmf). Example: (4, 2, 3, 1) --> (4, 6, 9, 10)

Cumulate the values of 'this' vector from left to right (e.g., create a CDF from a pmf). Example: (4, 2, 3, 1) --> (4, 6, 9, 10)

Attributes

infix def diff(y: IndexedSeq[Complex]): VectorC

Return the difference between this vector and vector y.

Return the difference between this vector and vector y.

Value parameters

y

the other vector/indexed sequence

Attributes

override def distinct: VectorC

Form a new vector consisting of the unique values in this vector.

Form a new vector consisting of the unique values in this vector.

Attributes

Definition Classes
SeqOps
infix def dot(y: IndexedSeq[Complex]): Complex

Compute the dot (inner) product of vectors this and y.

Compute the dot (inner) product of vectors this and y.

Value parameters

the

other vector/indexed sequence

Attributes

override def drop(n: Int): VectorC

Return a vector containing all but the first n elements of this vector.

Return a vector containing all but the first n elements of this vector.

Value parameters

n

the number of elements to be dropped

Attributes

Definition Classes
IndexedSeqOps -> IterableOps -> IterableOnceOps
def expand(more: Int): VectorC

Expand the size (dim) of this vector by more elements.

Expand the size (dim) of this vector by more elements.

Value parameters

more

the number of new elements to add

Attributes

override def filter(p: Complex => Boolean): VectorC

Filter the elements in this vector based on the predicate.

Filter the elements in this vector based on the predicate.

Value parameters

the

filter predicate

Attributes

Definition Classes
IterableOps -> IterableOnceOps
override def filterNot(p: Complex => Boolean): VectorC

Filter the elements in this vector based on the negation of the predicate.

Filter the elements in this vector based on the negation of the predicate.

Value parameters

the

filter predicate

Attributes

Definition Classes
IterableOps -> IterableOnceOps
def filterPos(p: Complex => Boolean): IndexedSeq[Int]

Filter the elements in this vector based on the predicate, returning index positions.

Filter the elements in this vector based on the predicate, returning index positions.

Value parameters

the

filter predicate

Attributes

override def foreach[U](f: Complex => U): Unit

Iterate over this vector element by element applying the given function.

Iterate over this vector element by element applying the given function.

Value parameters

f

the function to apply

Attributes

Definition Classes
IterableOnceOps
infix def intersect(y: IndexedSeq[Complex]): VectorC

Return the intersection of this vector and vector y.

Return the intersection of this vector and vector y.

Value parameters

y

the other vector/indexed sequence

Attributes

inline def iqsort: Array[Int]

Indirectly sort this vector using QuickSort, returning the rank order.

Indirectly sort this vector using QuickSort, returning the rank order.

Attributes

def isNonnegative: Boolean

Return whether this vector is non-negative (contains no negative values).

Return whether this vector is non-negative (contains no negative values).

Attributes

def isSorted: Boolean

Determine whether this vector is sorted in ascending order.

Determine whether this vector is sorted in ascending order.

Attributes

def iselsort: Array[Int]

Indirectly sort this vector using SelectionSort, returning the rank order.

Indirectly sort this vector using SelectionSort, returning the rank order.

Attributes

def iselsort(stop: Int): Array[Int]

Indirectly sort this vector using Selection Sort, returning the rank order of the stop smallest elements.

Indirectly sort this vector using Selection Sort, returning the rank order of the stop smallest elements.

Value parameters

stop

only sort stop number of smallest elements

Attributes

Compute the kurtosis of 'x' vector. High kurtosis (> 3) indicates a distribution with heavier tails than a Normal distribution.

Compute the kurtosis of 'x' vector. High kurtosis (> 3) indicates a distribution with heavier tails than a Normal distribution.

Attributes

See also
inline def length: Int

Return the length of this vector.

Return the length of this vector.

Attributes

def max: Complex

Return the maximum element of this vector.

Return the maximum element of this vector.

Attributes

infix def max0: VectorC

Return a new vector consisting of the maximum of this vector elements and zero.

Return a new vector consisting of the maximum of this vector elements and zero.

Attributes

infix def maxv(y: IndexedSeq[Complex]): VectorC

Return a new vector consisting of the maximum of this and y's corresponding elements.

Return a new vector consisting of the maximum of this and y's corresponding elements.

Value parameters

y

the other vector/indexed sequence

Attributes

inline def mean: Complex

Compute the sample mean (also the population mean, they are the same).

Compute the sample mean (also the population mean, they are the same).

E(X)

Attributes

def mean(j: Int, k: Int): Complex

Compute the mean of a subvector.

Compute the mean of a subvector.

Value parameters

j

the starting index (inclusive)

k

the ending index (exclusive)

Attributes

def median(k: Int): Complex

Indirectly find the k-median (k-th smallest element) of array v.

Indirectly find the k-median (k-th smallest element) of array v.

Value parameters

k

the type of median (e.g., k = (dim+1)/2 is the median)

Attributes

Compute the averaged median, which is the median when dim is odd and the average of the median and the next k-median when dim is even.

Compute the averaged median, which is the median when dim is odd and the average of the median and the next k-median when dim is even.

Attributes

def mids: VectorC

Return the vector containing the mid-points between adjacent elements.

Return the vector containing the mid-points between adjacent elements.

Attributes

def min: Complex

Return the minimum element of this vector.

Return the minimum element of this vector.

Attributes

infix def minv(y: IndexedSeq[Complex]): VectorC

Return a new vector consisting of the minimum of this and y's corresponding elements.

Return a new vector consisting of the minimum of this and y's corresponding elements.

Value parameters

y

the other vector/indexed sequence

Attributes

def ms: Complex

Compute the mean square (ms) (or root mean square (rms)) of this vector.

Compute the mean square (ms) (or root mean square (rms)) of this vector.

Attributes

inline def nd: Double
def norm: Complex
def norm1: Complex

Compute the Manhattan norm (1-norm) of this vector.

Compute the Manhattan norm (1-norm) of this vector.

Attributes

Compute the Euclidean norm (2-norm) (or its square) of this vector.

Compute the Euclidean norm (2-norm) (or its square) of this vector.

Attributes

def normSqs(k: Int): (Complex, Complex, Complex)

Compute three squared norms for the k-prefix, middle and k-suffix of this vector.

Compute three squared norms for the k-prefix, middle and k-suffix of this vector.

Value parameters

k

the integer specifying the size of the prefix

Attributes

Normalize this vector so its length is one (unit vector).

Normalize this vector so its length is one (unit vector).

Attributes

Normalize this vector to have a maximum of one.

Normalize this vector to have a maximum of one.

Attributes

def not(ix: Int): VectorC

Return the elements not equal to index ix of this vector.

Return the elements not equal to index ix of this vector.

Value parameters

ix

the index to skip

Attributes

def not(idx: IndexedSeq[Int]): VectorC

Return the elements not in index sequence idx of this vector.

Return the elements not in index sequence idx of this vector.

Value parameters

idx

the index sequence of elements to skip

Attributes

Compute product of the elements of this vector.

Compute product of the elements of this vector.

Attributes

def quantile(fraction: Complex): Complex

Compute the fraction quantile.

Compute the fraction quantile.

Value parameters

fraction

the fraction/percentile to take

Attributes

def recip: VectorC

Return the vector consisting of the reciprocal of each element of this vector.

Return the vector consisting of the reciprocal of each element of this vector.

Attributes

def reorder(rank: Array[Int]): VectorC

Given the rank order for this vector, return its elements in that order. The rank order may be established using indirect sorting (e.g., iqsort).

Given the rank order for this vector, return its elements in that order. The rank order may be established using indirect sorting (e.g., iqsort).

Value parameters

rank

the rank order of elements in this vector

Attributes

override def reverse: VectorC

Reverse the elements in this vector.

Reverse the elements in this vector.

Attributes

Definition Classes
IndexedSeqOps -> SeqOps
def rms: Complex
infix def scorr(y: VectorC): Complex

Compute Spearman's rank correlation of this vector with vector y. The iqsort method gives the rank order of a vector.

Compute Spearman's rank correlation of this vector with vector y. The iqsort method gives the rank order of a vector.

Value parameters

y

the other vector

Attributes

See also

en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

def set(a: Complex): Unit

Set all elements in this vector to scalar a.

Set all elements in this vector to scalar a.

Value parameters

a

the scalar value to be assigned

Attributes

def set(y: IndexedSeq[Complex]): Unit

Set all elements in this vector to vector y.

Set all elements in this vector to vector y.

Value parameters

y

the vector value to be assigned

Attributes

def skew: Complex

Compute the skewness of this vector. Negative skewness indicates the distribution is elongated on the left, zero skewness indicates it is symmetric, and positive skewness indicates it is elongated on the right.

Compute the skewness of this vector. Negative skewness indicates the distribution is elongated on the left, zero skewness indicates it is symmetric, and positive skewness indicates it is elongated on the right.

Attributes

See also
def skew_: Complex
override def sortWith(cmp: (Complex, Complex) => Boolean): VectorC

Sort the elements in this vector according to cmp (use '_ > _' for descending order).

Sort the elements in this vector according to cmp (use '_ > _' for descending order).

Value parameters

cmp

the comparison operator.

Attributes

Definition Classes
SeqOps
def split(idx: Set[Int]): (VectorC, VectorC)

Split the elements from this vector to form two vectors: one from the elements in idx (e.g., testing set) and the other from elements not in idx (e.g., training set). Note split and split_ produce different element orders.

Split the elements from this vector to form two vectors: one from the elements in idx (e.g., testing set) and the other from elements not in idx (e.g., training set). Note split and split_ produce different element orders.

Value parameters

idx

the set of element indices to include/exclude

Attributes

inline def split(idx: IndexedSeq[Int]): (VectorC, VectorC)
def split(i: Int): (VectorC, VectorC)

Split the elements from this vector to form two vectors: one from the the first i elements and the other from the rest of the elements.

Split the elements from this vector to form two vectors: one from the the first i elements and the other from the rest of the elements.

Value parameters

i

the split index

Attributes

def split_(idx: IndexedSeq[Int]): (VectorC, VectorC)

Split the elements from this vector to form two vectors: one from the elements in idx (e.g., testing set) and the other from elements not in idx (e.g., training set). Concise, but less efficient than split

Split the elements from this vector to form two vectors: one from the elements in idx (e.g., testing set) and the other from elements not in idx (e.g., training set). Concise, but less efficient than split

Value parameters

idx

the element indices to include/exclude

Attributes

def sqrt: VectorC

Return the vector consisting of the square root of each element of this vector.

Return the vector consisting of the square root of each element of this vector.

Attributes

Produce a standardized version of the vector by subtracting the mean and dividing by the standard deviation (e.g., Normal -> Standard Normal).

Produce a standardized version of the vector by subtracting the mean and dividing by the standard deviation (e.g., Normal -> Standard Normal).

Attributes

def stdev: Complex

Compute the sample standard deviation (and population standard deviation).

Compute the sample standard deviation (and population standard deviation).

Attributes

def sum: Complex

Compute sum of the elements of this vector.

Compute sum of the elements of this vector.

Attributes

def sums(k: Int): (Complex, Complex, Complex)

Compute three sums for the k-prefix, middle and k-suffix of this vector.

Compute three sums for the k-prefix, middle and k-suffix of this vector.

Value parameters

k

the integer specifying the size of the prefix

Attributes

def swap(i: Int, k: Int): Unit

Swap (in-place) elements i and k in this vector.

Swap (in-place) elements i and k in this vector.

Value parameters

i

the first element in the swap

k

the second element in the swap

Attributes

Convert 'this' VectorC into a VectorC.

Convert 'this' VectorC into a VectorC.

Attributes

Convert this Complex vector to a Double vector.

Convert this Complex vector to a Double vector.

Attributes

def toInt: VectorI

Convert this Complex vector to an Int vector.

Convert this Complex vector to an Int vector.

Attributes

Convert to a probability vector, by normalizing so that it sums to one.

Convert to a probability vector, by normalizing so that it sums to one.

Attributes

override def toString: String

Convert vector to a string.

Convert vector to a string.

Attributes

Definition Classes
Seq -> Function1 -> Iterable -> Any

Convert vector to vector of strings.

Convert vector to vector of strings.

Attributes

infix def tryCompareTo[B >: VectorC : AsPartiallyOrdered](bb: B): Option[Int]

Try to compare this vector to bb (return None if they are not comparable). As a partial order some vectors may not be comparable.

Try to compare this vector to bb (return None if they are not comparable). As a partial order some vectors may not be comparable.

Value parameters

bb

the other vector

Attributes

Return the negative of this vector (unary minus).

Return the negative of this vector (unary minus).

Attributes

def update(i: Int, a: Complex): Unit

Update the i-th element (or in range) of this vector.

Update the i-th element (or in range) of this vector.

Value parameters

a

the updated value to assign

i

the index of the element to update

Attributes

def update(r: Range, a: Complex): Unit

Update the i-th element (or in range) of this vector.

Update the i-th element (or in range) of this vector.

Value parameters

a

the update value to assign

i

the index of the element to update

Attributes

def update(r: Range, y: IndexedSeq[Complex]): Unit

Update the i-th element (or in range) of this vector.

Update the i-th element (or in range) of this vector.

Value parameters

i

the index of the element to update

y

the update vector/indexed sequence to assign

Attributes

Compute the sample variance (and population population).

Compute the sample variance (and population population).

E(X - μ)^2

Attributes

def ~^(a: Double): VectorC

Compute the element-wise power function of this vector raised to scalar a.

Compute the element-wise power function of this vector raised to scalar a.

Value parameters

the

scalar second operand

Attributes

Inherited methods

final def ++[B >: Complex](suffix: IterableOnce[B]): IndexedSeq[B]

Attributes

Inherited from:
IterableOps
final override def ++:[B >: Complex](prefix: IterableOnce[B]): IndexedSeq[B]

Attributes

Definition Classes
SeqOps -> IterableOps
Inherited from:
SeqOps
final def +:[B >: Complex](elem: B): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
final def :+[B >: Complex](elem: B): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
final def :++[B >: Complex](suffix: IterableOnce[B]): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
def <[B >: VectorC : AsPartiallyOrdered](that: B): Boolean

Attributes

Inherited from:
PartiallyOrdered
def <=[B >: VectorC : AsPartiallyOrdered](that: B): Boolean

Attributes

Inherited from:
PartiallyOrdered
def >[B >: VectorC : AsPartiallyOrdered](that: B): Boolean

Attributes

Inherited from:
PartiallyOrdered
def >=[B >: VectorC : AsPartiallyOrdered](that: B): Boolean

Attributes

Inherited from:
PartiallyOrdered
final def addString(b: StringBuilder): b.type

Attributes

Inherited from:
IterableOnceOps
final def addString(b: StringBuilder, sep: String): b.type

Attributes

Inherited from:
IterableOnceOps
def addString(b: StringBuilder, start: String, sep: String, end: String): b.type

Attributes

Inherited from:
IterableOnceOps
def andThen[C](k: PartialFunction[Complex, C]): PartialFunction[Int, C]

Attributes

Inherited from:
PartialFunction
override def andThen[C](k: Complex => C): PartialFunction[Int, C]

Attributes

Definition Classes
PartialFunction -> Function1
Inherited from:
PartialFunction
def appended[B >: Complex](elem: B): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
def appendedAll[B >: Complex](suffix: IterableOnce[B]): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
def applyOrElse[A1 <: Int, B1 >: Complex](x: A1, default: A1 => B1): B1

Attributes

Inherited from:
PartialFunction
def canEqual(that: Any): Boolean

Attributes

Inherited from:
Seq
override def clone(): IndexedSeq[Complex]

Create a copy of the receiver object.

Create a copy of the receiver object.

The default implementation of the clone method is platform dependent.

Attributes

Returns

a copy of the receiver object.

Note

not specified by SLS as a member of AnyRef

Definition Classes
SeqOps -> Cloneable -> Object
Inherited from:
SeqOps
def collect[B](pf: PartialFunction[Complex, B]): IndexedSeq[B]

Attributes

Inherited from:
IterableOps
def collectFirst[B](pf: PartialFunction[Complex, B]): Option[B]

Attributes

Inherited from:
IterableOnceOps
def combinations(n: Int): Iterator[IndexedSeq[Complex]]

Attributes

Inherited from:
SeqOps
def compose[R](k: PartialFunction[R, Int]): PartialFunction[R, Complex]

Attributes

Inherited from:
PartialFunction
def compose[A](g: A => Int): A => Complex

Attributes

Inherited from:
Function1
final override def concat[B >: Complex](suffix: IterableOnce[B]): IndexedSeq[B]

Attributes

Definition Classes
SeqOps -> IterableOps
Inherited from:
SeqOps
def contains[A1 >: Complex](elem: A1): Boolean

Attributes

Inherited from:
SeqOps
def containsSlice[B >: Complex](that: Seq[B]): Boolean

Attributes

Inherited from:
SeqOps
def copyToArray[B >: Complex](xs: Array[B], start: Int, len: Int): Int

Attributes

Inherited from:
IterableOnceOps
def copyToArray[B >: Complex](xs: Array[B], start: Int): Int

Attributes

Inherited from:
IterableOnceOps
def copyToArray[B >: Complex](xs: Array[B]): Int

Attributes

Inherited from:
IterableOnceOps
def corresponds[B](that: IterableOnce[B])(p: (Complex, B) => Boolean): Boolean

Attributes

Inherited from:
IterableOnceOps
def corresponds[B](that: Seq[B])(p: (Complex, B) => Boolean): Boolean

Attributes

Inherited from:
SeqOps
def count(p: Complex => Boolean): Int

Attributes

Inherited from:
IterableOnceOps
def diff[B >: Complex](that: Seq[B]): IndexedSeq[Complex]

Attributes

Inherited from:
SeqOps
def distinctBy[B](f: Complex => B): IndexedSeq[Complex]

Attributes

Inherited from:
SeqOps
override def dropRight(n: Int): IndexedSeq[Complex]

Attributes

Definition Classes
IndexedSeqOps -> IterableOps
Inherited from:
IndexedSeqOps
def dropWhile(p: Complex => Boolean): IndexedSeq[Complex]

Attributes

Inherited from:
IterableOps
def elementWise: ElementWiseExtractor[Int, Complex]

Attributes

Inherited from:
PartialFunction
override def empty: IndexedSeq[Complex]

Attributes

Definition Classes
IterableFactoryDefaults -> IterableOps
Inherited from:
IterableFactoryDefaults
def endsWith[B >: Complex](that: Iterable[B]): Boolean

Attributes

Inherited from:
SeqOps
override def equals(o: Any): Boolean

Compares the receiver object (this) with the argument object (that) for equivalence.

Compares the receiver object (this) with the argument object (that) for equivalence.

Any implementation of this method should be an equivalence relation:

  • It is reflexive: for any instance x of type Any, x.equals(x) should return true.
  • It is symmetric: for any instances x and y of type Any, x.equals(y) should return true if and only if y.equals(x) returns true.
  • It is transitive: for any instances x, y, and z of type Any if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.

If you override this method, you should verify that your implementation remains an equivalence relation. Additionally, when overriding this method it is usually necessary to override hashCode to ensure that objects which are "equal" (o1.equals(o2) returns true) hash to the same scala.Int. (o1.hashCode.equals(o2.hashCode)).

Value parameters

that

the object to compare against this object for equality.

Attributes

Returns

true if the receiver object is equivalent to the argument; false otherwise.

Definition Classes
Seq -> Equals -> Any
Inherited from:
Seq
def exists(p: Complex => Boolean): Boolean

Attributes

Inherited from:
IterableOnceOps
def find(p: Complex => Boolean): Option[Complex]

Attributes

Inherited from:
IterableOnceOps
def findLast(p: Complex => Boolean): Option[Complex]

Attributes

Inherited from:
SeqOps
def flatMap[B](f: Complex => IterableOnce[B]): IndexedSeq[B]

Attributes

Inherited from:
IterableOps
def flatten[B](implicit asIterable: Complex => IterableOnce[B]): IndexedSeq[B]

Attributes

Inherited from:
IterableOps
def fold[A1 >: Complex](z: A1)(op: (A1, A1) => A1): A1

Attributes

Inherited from:
IterableOnceOps
def foldLeft[B](z: B)(op: (B, Complex) => B): B

Attributes

Inherited from:
IterableOnceOps
override def foldRight[B](z: B)(op: (Complex, B) => B): B

Attributes

Definition Classes
IndexedSeqOps -> IterableOnceOps
Inherited from:
IndexedSeqOps
def forall(p: Complex => Boolean): Boolean

Attributes

Inherited from:
IterableOnceOps
protected def fromSpecific(coll: IterableOnce[Complex]): IndexedSeq[Complex]

Attributes

Inherited from:
IterableFactoryDefaults
def groupBy[K](f: Complex => K): Map[K, IndexedSeq[Complex]]

Attributes

Inherited from:
IterableOps
def groupMap[K, B](key: Complex => K)(f: Complex => B): Map[K, IndexedSeq[B]]

Attributes

Inherited from:
IterableOps
def groupMapReduce[K, B](key: Complex => K)(f: Complex => B)(reduce: (B, B) => B): Map[K, B]

Attributes

Inherited from:
IterableOps
def grouped(size: Int): Iterator[IndexedSeq[Complex]]

Attributes

Inherited from:
IterableOps
override def hashCode(): Int

Calculates a hash code value for the object.

Calculates a hash code value for the object.

The default hashing algorithm is platform dependent.

Note that it is allowed for two objects to have identical hash codes (o1.hashCode.equals(o2.hashCode)) yet not be equal (o1.equals(o2) returns false). A degenerate implementation could always return 0. However, it is required that if two objects are equal (o1.equals(o2) returns true) that they have identical hash codes (o1.hashCode.equals(o2.hashCode)). Therefore, when overriding this method, be sure to verify that the behavior is consistent with the equals method.

Attributes

Returns

the hash code value for this object.

Definition Classes
Seq -> Any
Inherited from:
Seq
override def head: Complex

Attributes

Definition Classes
IndexedSeqOps -> IterableOps
Inherited from:
IndexedSeqOps
override def headOption: Option[Complex]

Attributes

Definition Classes
IndexedSeqOps -> IterableOps
Inherited from:
IndexedSeqOps
def indexOf[B >: Complex](elem: B): Int

Attributes

Inherited from:
SeqOps
def indexOf[B >: Complex](elem: B, from: Int): Int

Attributes

Inherited from:
SeqOps
def indexOfSlice[B >: Complex](that: Seq[B]): Int

Attributes

Inherited from:
SeqOps
def indexOfSlice[B >: Complex](that: Seq[B], from: Int): Int

Attributes

Inherited from:
SeqOps
def indexWhere(p: Complex => Boolean): Int

Attributes

Inherited from:
SeqOps
def indexWhere(p: Complex => Boolean, from: Int): Int

Attributes

Inherited from:
SeqOps
def indices: Range

Attributes

Inherited from:
SeqOps
def init: IndexedSeq[Complex]

Attributes

Inherited from:
IterableOps
def inits: Iterator[IndexedSeq[Complex]]

Attributes

Inherited from:
IterableOps
def intersect[B >: Complex](that: Seq[B]): IndexedSeq[Complex]

Attributes

Inherited from:
SeqOps
def isDefinedAt(idx: Int): Boolean

Attributes

Inherited from:
SeqOps
override def isEmpty: Boolean

Attributes

Definition Classes
SeqOps -> IterableOnceOps
Inherited from:
SeqOps
override def isTraversableAgain: Boolean

Attributes

Definition Classes
IterableOps -> IterableOnceOps
Inherited from:
IterableOps
override def iterableFactory: SeqFactory[IndexedSeq]

Attributes

Definition Classes
IndexedSeq -> IndexedSeq -> Seq -> Seq -> Iterable -> Iterable -> IterableOps
Inherited from:
IndexedSeq
def iterator: Iterator[Complex]

Attributes

Inherited from:
IndexedSeqOps
override def knownSize: Int

Attributes

Definition Classes
IndexedSeqOps -> IterableOnce
Inherited from:
IndexedSeqOps
override def last: Complex

Attributes

Definition Classes
IndexedSeqOps -> IterableOps
Inherited from:
IndexedSeqOps
def lastIndexOf[B >: Complex](elem: B, end: Int): Int

Attributes

Inherited from:
SeqOps
def lastIndexOfSlice[B >: Complex](that: Seq[B]): Int

Attributes

Inherited from:
SeqOps
def lastIndexOfSlice[B >: Complex](that: Seq[B], end: Int): Int

Attributes

Inherited from:
SeqOps
def lastIndexWhere(p: Complex => Boolean): Int

Attributes

Inherited from:
SeqOps
def lastIndexWhere(p: Complex => Boolean, end: Int): Int

Attributes

Inherited from:
SeqOps
def lastOption: Option[Complex]

Attributes

Inherited from:
IterableOps
def lazyZip[B](that: Iterable[B]): LazyZip2[Complex, B, Iterable.this.type]

Attributes

Inherited from:
Iterable
final override def lengthCompare(that: Iterable[_]): Int

Attributes

Definition Classes
IndexedSeqOps -> SeqOps
Inherited from:
IndexedSeqOps
final override def lengthCompare(len: Int): Int

Attributes

Definition Classes
IndexedSeqOps -> SeqOps
Inherited from:
IndexedSeqOps
final def lengthIs: SizeCompareOps

Attributes

Inherited from:
SeqOps
def lift: Int => Option[Complex]

Attributes

Inherited from:
PartialFunction
override def map[B](f: Complex => B): IndexedSeq[B]

Attributes

Definition Classes
IndexedSeqOps -> IterableOps -> IterableOnceOps
Inherited from:
IndexedSeqOps
def mapInPlace(f: Complex => Complex): IndexedSeqOps.this.type

Attributes

Inherited from:
IndexedSeqOps
def max[B >: Complex](implicit ord: Ordering[B]): Complex

Attributes

Inherited from:
IterableOnceOps
def maxBy[B](f: Complex => B)(implicit ord: Ordering[B]): Complex

Attributes

Inherited from:
IterableOnceOps
def maxByOption[B](f: Complex => B)(implicit ord: Ordering[B]): Option[Complex]

Attributes

Inherited from:
IterableOnceOps
def maxOption[B >: Complex](implicit ord: Ordering[B]): Option[Complex]

Attributes

Inherited from:
IterableOnceOps
def min[B >: Complex](implicit ord: Ordering[B]): Complex

Attributes

Inherited from:
IterableOnceOps
def minBy[B](f: Complex => B)(implicit ord: Ordering[B]): Complex

Attributes

Inherited from:
IterableOnceOps
def minByOption[B](f: Complex => B)(implicit ord: Ordering[B]): Option[Complex]

Attributes

Inherited from:
IterableOnceOps
def minOption[B >: Complex](implicit ord: Ordering[B]): Option[Complex]

Attributes

Inherited from:
IterableOnceOps
final def mkString: String

Attributes

Inherited from:
IterableOnceOps
final def mkString(sep: String): String

Attributes

Inherited from:
IterableOnceOps
final def mkString(start: String, sep: String, end: String): String

Attributes

Inherited from:
IterableOnceOps
protected def newSpecificBuilder: Builder[Complex, IndexedSeq[Complex]]

Attributes

Inherited from:
IterableFactoryDefaults
def nonEmpty: Boolean

Attributes

Inherited from:
IterableOnceOps
def orElse[A1 <: Int, B1 >: Complex](that: PartialFunction[A1, B1]): PartialFunction[A1, B1]

Attributes

Inherited from:
PartialFunction
def padTo[B >: Complex](len: Int, elem: B): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
def partition(p: Complex => Boolean): (IndexedSeq[Complex], IndexedSeq[Complex])

Attributes

Inherited from:
IterableOps
def partitionMap[A1, A2](f: Complex => Either[A1, A2]): (IndexedSeq[A1], IndexedSeq[A2])

Attributes

Inherited from:
IterableOps
def patch[B >: Complex](from: Int, other: IterableOnce[B], replaced: Int): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
def permutations: Iterator[IndexedSeq[Complex]]

Attributes

Inherited from:
SeqOps
override def prepended[B >: Complex](elem: B): IndexedSeq[B]

Attributes

Definition Classes
IndexedSeqOps -> SeqOps
Inherited from:
IndexedSeqOps
def prependedAll[B >: Complex](prefix: IterableOnce[B]): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
def product[B >: Complex](implicit num: Numeric[B]): B

Attributes

Inherited from:
IterableOnceOps
def reduce[B >: Complex](op: (B, B) => B): B

Attributes

Inherited from:
IterableOnceOps
def reduceLeft[B >: Complex](op: (B, Complex) => B): B

Attributes

Inherited from:
IterableOnceOps
def reduceLeftOption[B >: Complex](op: (B, Complex) => B): Option[B]

Attributes

Inherited from:
IterableOnceOps
def reduceOption[B >: Complex](op: (B, B) => B): Option[B]

Attributes

Inherited from:
IterableOnceOps
def reduceRight[B >: Complex](op: (Complex, B) => B): B

Attributes

Inherited from:
IterableOnceOps
def reduceRightOption[B >: Complex](op: (Complex, B) => B): Option[B]

Attributes

Inherited from:
IterableOnceOps
override def reverseIterator: Iterator[Complex]

Attributes

Definition Classes
IndexedSeqOps -> SeqOps
Inherited from:
IndexedSeqOps
override protected def reversed: Iterable[Complex]

Attributes

Definition Classes
IndexedSeqOps -> IterableOnceOps
Inherited from:
IndexedSeqOps
def runWith[U](action: Complex => U): Int => Boolean

Attributes

Inherited from:
PartialFunction
def sameElements[B >: Complex](that: IterableOnce[B]): Boolean

Attributes

Inherited from:
SeqOps
def scala$collection$SeqOps$$super$concat[B >: Complex](suffix: IterableOnce[B]): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
def scala$collection$SeqOps$$super$sizeCompare(that: Iterable[_]): Int

Attributes

Inherited from:
SeqOps

Attributes

Inherited from:
SeqOps

Attributes

Inherited from:
Cloneable
def scan[B >: Complex](z: B)(op: (B, B) => B): IndexedSeq[B]

Attributes

Inherited from:
IterableOps
def scanLeft[B](z: B)(op: (B, Complex) => B): IndexedSeq[B]

Attributes

Inherited from:
IterableOps
def scanRight[B](z: B)(op: (Complex, B) => B): IndexedSeq[B]

Attributes

Inherited from:
IterableOps
override def search[B >: Complex](elem: B, from: Int, to: Int)(implicit ord: Ordering[B]): SearchResult

Attributes

Definition Classes
IndexedSeqOps -> SeqOps
Inherited from:
IndexedSeqOps
override def search[B >: Complex](elem: B)(implicit ord: Ordering[B]): SearchResult

Attributes

Definition Classes
IndexedSeqOps -> SeqOps
Inherited from:
IndexedSeqOps
def segmentLength(p: Complex => Boolean, from: Int): Int

Attributes

Inherited from:
SeqOps
final def segmentLength(p: Complex => Boolean): Int

Attributes

Inherited from:
SeqOps
final override def size: Int

Attributes

Definition Classes
SeqOps -> IterableOnceOps
Inherited from:
SeqOps
final override def sizeCompare(that: Iterable[_]): Int

Attributes

Definition Classes
SeqOps -> IterableOps
Inherited from:
SeqOps
final override def sizeCompare(otherSize: Int): Int

Attributes

Definition Classes
SeqOps -> IterableOps
Inherited from:
SeqOps
final def sizeIs: SizeCompareOps

Attributes

Inherited from:
IterableOps
override def slice(from: Int, until: Int): IndexedSeq[Complex]

Attributes

Definition Classes
IndexedSeqOps -> IterableOps -> IterableOnceOps
Inherited from:
IndexedSeqOps
def sliding(size: Int, step: Int): Iterator[IndexedSeq[Complex]]

Attributes

Inherited from:
IterableOps
def sliding(size: Int): Iterator[IndexedSeq[Complex]]

Attributes

Inherited from:
IterableOps
def sortBy[B](f: Complex => B)(implicit ord: Ordering[B]): IndexedSeq[Complex]

Attributes

Inherited from:
SeqOps
def sortInPlace[B >: Complex]()(implicit ord: Ordering[B]): IndexedSeqOps.this.type

Attributes

Inherited from:
IndexedSeqOps
def sortInPlaceBy[B](f: Complex => B)(implicit ord: Ordering[B]): IndexedSeqOps.this.type

Attributes

Inherited from:
IndexedSeqOps
def sortInPlaceWith(lt: (Complex, Complex) => Boolean): IndexedSeqOps.this.type

Attributes

Inherited from:
IndexedSeqOps
def sorted[B >: Complex](implicit ord: Ordering[B]): IndexedSeq[Complex]

Attributes

Inherited from:
SeqOps
def span(p: Complex => Boolean): (IndexedSeq[Complex], IndexedSeq[Complex])

Attributes

Inherited from:
IterableOps
override def splitAt(n: Int): (IndexedSeq[Complex], IndexedSeq[Complex])

Attributes

Definition Classes
IterableOps -> IterableOnceOps
Inherited from:
IterableOps
def startsWith[B >: Complex](that: IterableOnce[B], offset: Int): Boolean

Attributes

Inherited from:
SeqOps
override def stepper[S <: Stepper[_]](implicit shape: StepperShape[Complex, S]): S & EfficientSplit

Attributes

Definition Classes
IndexedSeqOps -> IterableOnce
Inherited from:
IndexedSeqOps
def sum[B >: Complex](implicit num: Numeric[B]): B

Attributes

Inherited from:
IterableOnceOps
def tail: IndexedSeq[Complex]

Attributes

Inherited from:
IterableOps
def tails: Iterator[IndexedSeq[Complex]]

Attributes

Inherited from:
IterableOps
override def take(n: Int): IndexedSeq[Complex]

Attributes

Definition Classes
IndexedSeqOps -> IterableOps -> IterableOnceOps
Inherited from:
IndexedSeqOps
override def takeRight(n: Int): IndexedSeq[Complex]

Attributes

Definition Classes
IndexedSeqOps -> IterableOps
Inherited from:
IndexedSeqOps
def takeWhile(p: Complex => Boolean): IndexedSeq[Complex]

Attributes

Inherited from:
IterableOps
override def tapEach[U](f: Complex => U): IndexedSeq[Complex]

Attributes

Definition Classes
IterableOps -> IterableOnceOps
Inherited from:
IterableOps
def to[C1](factory: Factory[Complex, C1]): C1

Attributes

Inherited from:
IterableOnceOps
def toArray[B >: Complex : ClassTag]: Array[B]

Attributes

Inherited from:
IterableOnceOps
final def toBuffer[B >: Complex]: Buffer[B]

Attributes

Inherited from:
IterableOnceOps
def toIndexedSeq: IndexedSeq[Complex]

Attributes

Inherited from:
IterableOnceOps
def toList: List[Complex]

Attributes

Inherited from:
IterableOnceOps
def toMap[K, V](implicit ev: Complex <:< (K, V)): Map[K, V]

Attributes

Inherited from:
IterableOnceOps
def toSeq: Seq[Complex]

Attributes

Inherited from:
IterableOnceOps
def toSet[B >: Complex]: Set[B]

Attributes

Inherited from:
IterableOnceOps
def toVector: Vector[Complex]

Attributes

Inherited from:
IterableOnceOps
def transpose[B](implicit asIterable: Complex => Iterable[B]): IndexedSeq[IndexedSeq[B]]

Attributes

Inherited from:
IterableOps
def unapply(a: Int): Option[Complex]

Attributes

Inherited from:
PartialFunction
def unzip[A1, A2](implicit asPair: Complex => (A1, A2)): (IndexedSeq[A1], IndexedSeq[A2])

Attributes

Inherited from:
IterableOps
def unzip3[A1, A2, A3](implicit asTriple: Complex => (A1, A2, A3)): (IndexedSeq[A1], IndexedSeq[A2], IndexedSeq[A3])

Attributes

Inherited from:
IterableOps
def updated[B >: Complex](index: Int, elem: B): IndexedSeq[B]

Attributes

Inherited from:
SeqOps
override def view: IndexedSeqView[Complex]

Attributes

Definition Classes
IndexedSeqOps -> SeqOps -> IterableOps
Inherited from:
IndexedSeqOps
def withFilter(p: Complex => Boolean): WithFilter[Complex, IndexedSeq]

Attributes

Inherited from:
IterableOps
def zip[B](that: IterableOnce[B]): IndexedSeq[(Complex, B)]

Attributes

Inherited from:
IterableOps
def zipAll[A1 >: Complex, B](that: Iterable[B], thisElem: A1, thatElem: B): IndexedSeq[(A1, B)]

Attributes

Inherited from:
IterableOps
def zipWithIndex: IndexedSeq[(Complex, Int)]

Attributes

Inherited from:
IterableOps

Deprecated and Inherited methods

final def /:[B](z: B)(op: (B, Complex) => B): B

Attributes

Deprecated
[Since version 2.13.0] Use foldLeft instead of /:
Inherited from:
IterableOnceOps
final def :\[B](z: B)(op: (Complex, B) => B): B

Attributes

Deprecated
[Since version 2.13.0] Use foldRight instead of :\\
Inherited from:
IterableOnceOps
def aggregate[B](z: => B)(seqop: (B, Complex) => B, combop: (B, B) => B): B

Attributes

Deprecated
[Since version 2.13.0] For sequential collections, prefer `foldLeft(z)(seqop)`. For parallel collections, use `ParIterableLike#aggregate`.
Inherited from:
IterableOnceOps
def companion: IterableFactory[IndexedSeq]

Attributes

Deprecated
[Since version 2.13.0] Use iterableFactory instead
Inherited from:
IterableOps
final def copyToBuffer[B >: Complex](dest: Buffer[B]): Unit

Attributes

Deprecated
[Since version 2.13.0] Use `dest ++= coll` instead
Inherited from:
IterableOnceOps
def hasDefiniteSize: Boolean

Attributes

Deprecated
[Since version 2.13.0] Check .knownSize instead of .hasDefiniteSize for more actionable information (see scaladoc for details)
Inherited from:
IterableOnceOps
final def prefixLength(p: Complex => Boolean): Int

Attributes

Deprecated
[Since version 2.13.0] Use segmentLength instead of prefixLength
Inherited from:
SeqOps
final def repr: IndexedSeq[Complex]

Attributes

Deprecated
[Since version 2.13.0] Use coll instead of repr in a collection implementation, use the collection value itself from the outside
Inherited from:
IterableOps
def reverseMap[B](f: Complex => B): IndexedSeq[B]

Attributes

Deprecated
[Since version 2.13.0] Use .reverseIterator.map(f).to(...) instead of .reverseMap(f)
Inherited from:
SeqOps
def seq: Iterable.this.type

Attributes

Deprecated
[Since version 2.13.0] Iterable.seq always returns the iterable itself
Inherited from:
Iterable
final def toIterable: Iterable.this.type

Attributes

Deprecated
[Since version 2.13.7] toIterable is internal and will be made protected; its name is similar to `toList` or `toSeq`, but it doesn\'t copy non-immutable collections
Inherited from:
Iterable
final def toIterator: Iterator[Complex]

Attributes

Deprecated
[Since version 2.13.0] Use .iterator instead of .toIterator
Inherited from:
IterableOnceOps
final def toStream: Stream[Complex]

Attributes

Deprecated
[Since version 2.13.0] Use .to(LazyList) instead of .toStream
Inherited from:
IterableOnceOps
final def toTraversable: Iterable[Complex]

Attributes

Deprecated
[Since version 2.13.0] toTraversable is internal and will be made protected; its name is similar to `toList` or `toSeq`, but it doesn\'t copy non-immutable collections
Inherited from:
IterableOps
final def transform(f: Complex => Complex): SeqOps.this.type

Attributes

Deprecated
[Since version 2.13.0] Use `mapInPlace` on an `IndexedSeq` instead
Inherited from:
SeqOps
final def union[B >: Complex](that: Seq[B]): IndexedSeq[B]

Attributes

Deprecated
[Since version 2.13.0] Use `concat` instead
Inherited from:
SeqOps
override def view(from: Int, until: Int): IndexedSeqView[Complex]

Attributes

Deprecated
[Since version 2.13.0] Use .view.slice(from, until) instead of .view(from, until)
Definition Classes
IndexedSeqOps -> IterableOps
Inherited from:
IndexedSeqOps

Concrete fields

val dim: Int