ARY

scalation.modeling.forecasting.ARY
See theARY companion class
object ARY extends MakeMatrix4TSY

The ARY companion object provides factory methods for the ARY class.

Attributes

Companion
class
Graph
Supertypes
class Object
trait Matchable
class Any
Self type
ARY.type

Members list

Value members

Concrete methods

def apply(y: VectorD, hh: Int, fname_: Array[String], tRng: Range, hparam: HyperParameter, bakcast: Boolean): ARY

Create an ARY object by making/building an input matrix x and then calling the ARY constructor.

Create an ARY object by making/building an input matrix x and then calling the ARY constructor.

Value parameters

bakcast

whether a backcasted value is prepended to the time series (defaults to false)

fname_

the feature/variable names

hh

the maximum forecasting horizon (h = 1 to hh)

hparam

the hyper-parameters

tRng

the time range, if relevant (time index may suffice)

y

the response vector (time series data)

Attributes

Create an ARY object for the special case of ARY(1) and use SimpleRegression.

Create an ARY object for the special case of ARY(1) and use SimpleRegression.

Value parameters

the

response vector (time series data)

Attributes

def buildMatrix(y: VectorD, hp_: HyperParameter, bakcast: Boolean): MatrixD

Build the input matrix by combining the p + spec columns for the trend and endogenous variable with the q * xe.dim2 columns for the exogenous variables.

Build the input matrix by combining the p + spec columns for the trend and endogenous variable with the q * xe.dim2 columns for the exogenous variables.

Value parameters

bakcast

whether a backcasted value is prepended to the time series (defaults to false)

hp_

the hyper-parameters

y

the response vector (time series data)

Attributes

def rescale(y: VectorD, hh: Int, fname_: Array[String], tRng: Range, hparam: HyperParameter, bakcast: Boolean, tForm: (VectorD | MatrixD) => Transform): ARY

Create an ARY object by building an input matrix xy and then calling the ARY constructor. Also rescale the input data.

Create an ARY object by building an input matrix xy and then calling the ARY constructor. Also rescale the input data.

Value parameters

bakcast

whether a backcasted value is prepended to the time series (defaults to false)

hh

the maximum forecasting horizon (h = 1 to hh)

hparam

the hyper-parameters

tForm

the z-transform (rescale to standard normal)

tRng

the time range, if relevant (time index may suffice)

y

the endogenous/response vector (main time series data)

Attributes